首页> 外文学位 >Atomically-Precise Synthesis of Platinum catalysts on Strontium Titanate using Atomic Layer Deposition.
【24h】

Atomically-Precise Synthesis of Platinum catalysts on Strontium Titanate using Atomic Layer Deposition.

机译:使用原子层沉积在钛酸锶上原子精确地合成铂催化剂。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation examines growth of platinum nanoparticles from atomic layer deposition (ALD) on SrTiO3 using a characterization approach that combines imaging techniques and other complementary analytical methods. The primary suite of characterization probes includes high resolution transmission electron microscopy (HRTEM), high angular annual dark field-scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and The Fourier transform infrared (FTIR). All imaging techniques reveal that Platinum nanoparticle grown via ALD are ultrafine with very narrow size distribution and well dispersed on either single crystal or nanocuboid shape strontium titanate (SrTiO3, STO) substrates.;The fundamental growth mechanism of Pt nanoparticles is investigated in details using HAADF-STEM, XPS and ICP-AES. During the initial cycle of ALD the deposition process begins with nucleation followed by growth, both occurring on a fast time scale relative to the deposition time. The final size is determined by net Pt deposition which is affected by reaction temperature. For multiple cycles, the particle size increases with the number of ALD cycles which also relies on net Pt deposition during that cycles. The increase in size per cycle is significantly lower than first cycle. This effect is due to carbonaceous material left on the surface from decomposition of the MeCpPtMe3 ligands. A negligible change of particle density during multiple cycle ALD deposition suggests a minimum secondary nucleation or particle coalescence.;The influence of different ALD parameters, e.g. reaction temperature, number of cycles, substrate, reagents and type of ALD methods, to acquired Pt nanoparticles are investigated and discussed individually. Particle size, density and loading vary with reaction temperature, number of cycles and type of ALD method. Pt growth orientation and shape can be changed by using different substrates. Application of Winterbottom construction to the observed shape of Pt nanoparticles on strontium titanate nanocuboids revealed that the surface structure of substrates and particle shape, growth orientation are interlinked, with control over one allowing equally precise control over the other. And changing the 2nd reagent can leads to different chemical states and compositions of formed particles. Thus, atomic level controlling synthesis in particle size, density, loading, chemical composition, growth orientation and thermodynamic shape of deposited Pt nanoparticles can be achieved by tuning these ALD parameters. Combining these observations will allow one to understand and improve catalytic performance when these particles are used for catalytic purposes, as selectivity and reactivity are often heavily dependent on catalyst size, shape, dispersion, exposed surfaces and chemical state. By choosing CO oxidation as a probe reaction, we revealed that Pt catalyst performance is strongly depends on their supporting material and size, as changing of which will alter the number or type of active sites of Pt catalysts which will change their catalytic performance.
机译:本文采用结合了成像技术和其他互补分析方法的表征方法,研究了在SrTiO3上原子层沉积(ALD)上铂纳米颗粒的生长。主要的表征探针套件包括高分辨率透射电子显微镜(HRTEM),高角度年度暗场扫描透射电子显微镜(HAADF-STEM),X射线光电子能谱(XPS),电感耦合等离子体原子发射光谱(ICP) -AES)和傅立叶变换红外(FTIR)。所有的成像技术都表明,通过原子层沉积法生长的铂纳米粒子是超细的,尺寸分布非常窄,并且可以很好地分散在单晶或纳米立方体形的钛酸锶(SrTiO3,STO)衬底上。;使用HAADF详细研究了铂纳米粒子的基本生长机理-STEM,XPS和ICP-AES。在ALD的初始循环中,沉积过程从成核开始,然后是生长,两者均相对于沉积时间以快速的时间尺度发生。最终尺寸取决于受反应温度影响的净Pt沉积量。对于多个循环,粒径随着ALD循环次数的增加而增加,这也依赖于该循环期间的净Pt沉积。每个周期的大小增加明显低于第一个周期。这种作用是由于MeCpPtMe3配体分解而留在表面的碳质材料所致。在多循环ALD沉积过程中颗粒密度的变化可忽略不计,这表明最小的二次成核或颗粒聚结;不同ALD参数的影响,例如分别研究和讨论了获得的Pt纳米粒子的反应温度,循环数,底物,试剂和ALD方法的类型。颗粒大小,密度和载量随反应温度,循环次数和ALD方法的类型而变化。 Pt的生长方向和形状可以通过使用不同的基板来改变。将Winterbottom结构应用于钛酸锶纳米立方体上Pt纳米粒子的观察形状,发现基板的表面结构与粒子形状,生长方向相互关联,控制一个可以实现对另一个的精确控制。并且改变第二试剂可以导致不同的化学状态和形成的颗粒的组成。因此,可以通过调节这些ALD参数来实现在沉积的Pt纳米颗粒的粒度,密度,负载,化学组成,生长取向和热力学形状方面的原子水平控制合成。当这些颗粒用于催化目的时,将这些观察结果结合起来将使人们理解并改善催化性能,因为选择性和反应性通常在很大程度上取决于催化剂的大小,形状,分散性,暴露的表面和化学状态。通过选择CO氧化作为探针反应,我们发现Pt催化剂的性能在很大程度上取决于其载体材料和尺寸,因为改变它们会改变Pt催化剂活性位点的数量或类型,从而改变其催化性能。

著录项

  • 作者

    Wang, Chuandao.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Materials Science.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:02

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号