首页> 外文学位 >Applications of NIPAm Copolymers in Lignocellulosic Biomass Depolymerization for Biofuels Production.
【24h】

Applications of NIPAm Copolymers in Lignocellulosic Biomass Depolymerization for Biofuels Production.

机译:NIPAm共聚物在木质纤维素生物质解聚中用于生物燃料生产的应用。

获取原文
获取原文并翻译 | 示例

摘要

There is currently great interest in the use of cellulosic biomass as a source of renewable fuels. This practice generally involves the enzymatic hydrolysis of plant matter to afford soluble sugars for subsequent fermentation steps. The cost of cellulase enzymes presents a critical barrier to the commercialization of these processes. In this work, two methods to reduce enzyme costs are presented. Both are based on copolymers exhibiting a thermoresponsive lower critical solution temperature (LCST), created through the copolymerization of an aminooxy-bearing methacrylamide with N -isopropylacrylamide (NIPAm) or N-isopropylmethacrylamide (NIPMa). The design of this copolymer includes three different ways to adjust the LCST, allowing it to be readily tailored to the temperature requirements of a specific application. In the first strategy, this copolymer system is combined with a site-selective protein modification method to construct a recoverable polymer-endoglucanase bioconjugate. This bioconjugate matches the activity of unmodified enzymes on insoluble purified cellulose, and shows an increased hydrolysis yield on an industrially-relevant lignocellulosic biomass. The recycling ability of the bioconjugate was evaluated over three rounds of activity, affording significantly more soluble carbohydrates than unmodified enzyme alone on both assayed substrates. The second application of the NIPAm copolymers is as a new family of polymer additives that can increase enzyme performance substantially. When applied to an industrially relevant combination of enzymes and lignin-containing biomass, polymer additives allow a 60% reduction in enzyme loading to achieve the same level of saccharification. It was found that these polymers function through multiple mechanisms, including (1) preventing enzyme denaturation from shear and interfacial interactions, (2) preventing non-productive adsorption to lignin, and (3) altering the cellulose structure. These two applications of NIPAm copolymers were tailored specifically for use with cellulases. However, it was found that the ability of NIPAm copolymers to stabilize proteins against shear and interfacial stress extends to other, non-cellulolytic enzymes. This expands the potential use of NIPAm copolymers to a range of industrial operations.
机译:当前,人们非常关注使用纤维素生物质作为可再生燃料的来源。该实践通常涉及植物物质的酶促水解,以提供用于后续发酵步骤的可溶性糖。纤维素酶的成本是这些方法商业化的关键障碍。在这项工作中,提出了两种降低酶成本的方法。两者均基于显示出热响应性较低的临界溶液温度(LCST)的共聚物,该温度是通过含氨基氧基的甲基丙烯酰胺与N-异丙基丙烯酰胺(NIPAm)或N-异丙基甲基丙烯酰胺(NIPMa)的共聚反应而产生的。该共聚物的设计包括三种不同的调节LCST的方法,从而可以轻松地使其适应特定应用的温度要求。在第一种策略中,将这种共聚物系统与位点选择性蛋白质修饰方法相结合,以构建可回收的聚合物-内葡聚糖酶生物结合物。该生物缀合物与未修饰的酶对不溶的纯化纤维素的活性匹配,并且在与工业相关的木质纤维素生物质上显示出增加的水解产量。在三轮活动中评估了生物缀合物的再循环能力,在两种测定的底物上均比未修饰的酶提供了更多的可溶性碳水化合物。 NIPAm共聚物的第二个应用是作为一种新的聚合物添加剂系列,可以显着提高酶的性能。当应用于酶和含木质素的生物质的工业相关组合时,聚合物添加剂可使酶的负载减少60%,以达到相同的糖化水平。发现这些聚合物通过多种机理起作用,包括(1)防止酶由于剪切和界面相互作用而变性,(2)防止对木质素的非生产性吸附,以及(3)改变纤维素结构。 NIPAm共聚物的这两种应用是专门针对纤维素酶量身定制的。然而,发现NIPAm共聚物稳定蛋白质抵抗剪切和界面应力的能力扩展到其他非纤维素分解酶。这将NIPAm共聚物的潜在用途扩展到了一系列工业操作中。

著录项

  • 作者

    Mackenzie, Katherine Jean.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Polymer chemistry.;Organic chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号