首页> 外文学位 >A study on nanofabricated fully suspended graphene microribbons and their photophysics.
【24h】

A study on nanofabricated fully suspended graphene microribbons and their photophysics.

机译:纳米制造的全悬浮石墨烯微带及其光物理研究。

获取原文
获取原文并翻译 | 示例

摘要

Graphene exhibits extraordinary electrical, mechanical and optical properties which have attracted tremendous attention for applications in nanoelectronics, nanophotonics and novel sensor technologies. Properties such as wavelength-independent optical absorption and high carrier motilities are of particular interest for photodetection applications. While photodetectors made from mechanically exfoliated graphene are well reported in literature, a scalable approach, such as photodetectors made from chemical vapor deposition (CVD)-grown graphene, is highly desired from a practical standpoint. However, the photophysics of CVD-graphene involves complex mechanisms arising from inherent grain boundaries and defect levels, which are not well understood. Furthermore, the fabrication and characterization of suspended CVD-graphene structures are challenging, since they require the incorporation of several unique methodologies to create high performance photodetectors.;This dissertation presents a study of CVD- graphene microribbons suspended between the metal contacts in photodetector applications. Several fabrication techniques, including larger-area CVD growth and polymer free transfer of monolayer graphene, full suspension of graphene microribbons and laser-current annealing, are utilized to obtain high-quality suspended graphene microribbons. In this study, Full suspension of CVD-graphene microribbons is found to enable four-fold improvement in photoresponse over substrate-supported microribbons, which is a significant step towards enhancing responsivity of future generation photodetectors. The photophysics of fully suspended graphene microribbons is analyzed using light-current input/output (L-I) analysis, which describes incident power dependent characteristics of photoelectric and/or photo-thermoelectric effects. From the analysis, it is found that the photoelectric effect dominates the photocurrent generation mechanism in fully suspended graphene, in contrast to the photo-thermoelectric effect dominating in substrate-supported graphene. This finding implies that, in the future, one can optimize graphene photodetectors by tailoring their design and fabrication processes. These characteristics are also promising for wafer-scale fabrication of graphene photodetectors approaching THz cut-off frequency. This dissertation addresses several fundamental questions regarding the mechanical and electro-optical properties of CVD-graphene microribbons exposed to varying electrical field, incident light intensity and temperature. Furthermore, this work presents a new understanding of individual contributions from photoelectric and photo-thermoelectric effects, as well as the built-in electric field, which is of paramount importance to future design of efficient graphene-based photodetectors.
机译:石墨烯具有非凡的电,机械和光学性能,在纳米电子,纳米光子学和新型传感器技术中的应用引起了极大的关注。诸如波长无关的光吸收和高载流子迁移率之类的特性对于光电检测应用尤为重要。尽管在文献中已经充分报道了由机械剥离的石墨烯制成的光电检测器,但是从实用的角度出发,人们迫切需要可扩展的方法,例如由化学气相沉积(CVD)-生长的石墨烯制成的光电检测器。然而,CVD-石墨烯的光物理涉及由固有的晶界和缺陷水平引起的复杂机制,这还没有被很好地理解。此外,悬浮的CVD石墨烯结构的制造和表征具有挑战性,因为它们需要结合几种独特的方法来创建高性能的光电探测器。本论文对在光电探测器应用中悬浮在金属触点之间的CVD石墨烯微带进行了研究。包括大面积CVD生长和单层石墨烯的无聚合物转移,石墨烯微带的完全悬浮以及激光电流退火在内的几种制造技术可用于获得高质量的悬浮石墨烯微带。在这项研究中,发现CVD石墨烯微带的完全悬浮可以使光响应比衬底支持的微带提高4倍,这是提高下一代光电探测器响应能力的重要一步。使用光电流输入/输出(L-I)分析来分析完全悬浮的石墨烯微带的光物理性质,该分析描述了光电和/或光热电效应的入射功率相关特性。通过分析发现,与在衬底支撑的石墨烯中占主导地位的光热电效应相反,在完全悬浮的石墨烯中光电效应占主导地位的光电流产生机理。这一发现意味着,将来,可以通过调整其设计和制造工艺来优化石墨烯光电探测器。这些特性也有望用于接近THz截止频率的石墨烯光电探测器的晶圆级制造。这篇论文提出了几个有关暴露于变化的电场,入射光强度和温度下的CVD-石墨烯微带的机械和电光性能的基本问题。此外,这项工作提出了对光电和光热电效应以及内建电场的个体贡献的新认识,这对于高效石墨烯基光电探测器的未来设计至关重要。

著录项

  • 作者

    Patil, Vikram.;

  • 作者单位

    Stevens Institute of Technology.;

  • 授予单位 Stevens Institute of Technology.;
  • 学科 Nanotechnology.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号