首页> 外文学位 >Path integral Monte Carlo and the electron gas.
【24h】

Path integral Monte Carlo and the electron gas.

机译:路径积分蒙特卡罗和电子气。

获取原文
获取原文并翻译 | 示例

摘要

Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas.;We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations.;The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational principle inherent in the path integral Monte Carlo method to optimize the nodal surface. By using a ansatz resembling a free particle density matrix, we make a unique connection between a nodal effective mass and the traditional effective mass of many-body quantum theory. We then propose and test several alternate nodal ansatzes and apply them to single atomic systems. Finally, we propose a method to tackle the sign problem head on, by leveraging the relatively simple structure of permutation space. Using this method, we find we can perform exact simulations this of the electron gas and 3He that were previously impossible.
机译:路径积分蒙特卡罗是一种在有限温度下精确模拟量子力学系统的可靠方法。通过对费曼的量子多体密度矩阵的路径积分表示进行随机采样,路径积分蒙特卡洛以自然的方式包括了诸如热涨落和粒子相关性之类的非扰动效应。在过去的30年中,路径积分蒙特卡罗已成功地用于研究低密度电子气,高压氢和超流氦。但是,对于费米统计作用很重要的系统,传统的路径积分蒙特卡洛模拟随着温度的降低和系统尺寸的增加,效率呈指数下降。在本文中,我们致力于通过近似方法和精确方法来提高效率,特别是适用于均质电子气的方法。我们首先简要研究原子在有限温度下的当前状态,然后再深入研究原子能。路径积分蒙特卡罗方法的教学回顾。然后,我们花一些时间讨论阻止费米系统精确仿真的一个主要问题,即符号问题。然后,我们介绍一种通过固定节点约束来规避PIMC仿真中的符号问题的方法。然后,我们将这种方法应用于密度和温度范围较大的均匀电子气中,以便绘制出热致密物质状态。从简单的奖牌到恒星内部,电子气可以成为许多实际系统的代表模型。但是,其最常见的用途是作为密度泛函理论的输入。为此,我们旨在建立从基态到经典极限的电子气的精确表示,并检验其在有限温度密度泛函中的应用。本论文的后半部分着重于固定态以外的可能途径。节点近似。第一步,我们利用路径积分蒙特卡罗方法固有的变分原理来优化节点表面。通过使用类似于自由粒子密度矩阵的ansatz,我们在节点有效质量和多体量子理论的传统有效质量之间建立了独特的联系。然后,我们提出并测试了几种替代的节点解析度,并将其应用于单个原子系统。最后,我们提出了一种利用排列空间相对简单的结构来直接解决符号问题的方法。使用这种方法,我们发现可以对以前不可能的电子气和3He进行精确的模拟。

著录项

  • 作者

    Brown, Ethan W.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号