首页> 外文学位 >Functional models of fMRI bold signal in the visual cortex.
【24h】

Functional models of fMRI bold signal in the visual cortex.

机译:功能磁共振成像功能模型在视觉皮层中的粗体信号。

获取原文
获取原文并翻译 | 示例

摘要

Functional magnetic resonance imaging (fMRI) is a functional imaging procedure that measures the neural activity by detecting the associate changes in the blood flow. It has become one of the most widely used technologies for in-vivo human brain imaging.;Since the first sets of fMRI images were acquired to compare the response in visual areas with visual stimuli either on or off, fMRI has been prominent in the study of the visual system. Not only fMRI extends our knowledge about the human visual system with different stimuli and tasks, but also the visual system provides a venue for understanding the mechanism of the fMRI signal and for testing new analysis methods. My three studies follow this tradition of fruitful interactions between fMRI methods and findings about the visual system, and these three projects are fully elaborated from chapter 2 to chapter 4.;In chapter 2, we identify and explain the correlational structures of the spontaneous BOLD fMRI in the low-level visual areas. We measured the BOLD response while subjects rested with their eyes closed, without stimuli or any explicit tasks. We studied the measured spontaneous activity in the visual cortex (V1-V3) at a fine scale. We found that the strongest correlations in spontaneous activity are between points on the cortex with functional receptive fields at the same distance from the point of gaze in the visual space, irrespective of whether the receptive fields are in the same quadrant or hemi-field. No iso-eccentricity connections have ever been reported in the visual area using anatomical methods. We used a simulation to determine if temporally varying and spatially diffused feedback from at least two higher cortical areas with different amounts of coverage of the peripheral visual field can provide a quantitative account of these findings.;The purpose of the second study, described in chapter 3, is to build a signal strength response model which accounts for category specificity and attention effect across different visual areas. Using fMRI, we conducted three complementary experiments in which observers had to compare either the face or scene component of a pair of briefly presented images, each being an amalgamation of face, scene and random noise pattern. We found that the BOLD response to each non-noise image component (face or scene) is linear in the "signal proportion" of the component, defined as the ratio of the contrast energy of the component to the contrast energy of the entire image. For a cortical area along the ventral visual pathway, the slope of this linear function depends on whether the component is attended to and if it is preferred by the cortical area. The net BOLD response of a cortical area is a simple sum of the responses to all non-noise components. We validated this linear sum-of-components model by showing that a model fitted to the data from any two of the three experiments can accurately predict the empirical results of the third.;The aim of my third study, described in chapter 4, is to understand the relationship between the neural response and BOLD response with an achiasmatic subject. Achiasma is a rare congenital condition that prevents the normal crossing of the optic nerves from developing. Because the optic chiasm is absent, the left and right halves of the visual field project to the same cerebral hemisphere, ipsilateral to the eye of origin. In such an achiasmatic individual, subject S, we found that each fMRI voxel in the retinotopic areas V1-V3 responds equally to two positions in the visual field. These two population receptive fields (pRFs) of a single voxel are located mirror-symmetrically about the vertical meridian. Contrast masking and fMRI adaptation experiments revealed that these pRFs are served by two non-interacting groups of neurons of comparable number and excitability. By presenting identical stimuli to both of these receptive fields instead of just one, we can double the local neural activity, regardless of the definition of "neural activity." Using this in-vivo model, we found that BOLD response amplitude is proportional to approximately the square root of the underlying neural activity.
机译:功能磁共振成像(fMRI)是一种功能成像程序,可通过检测血流的相关变化来测量神经活动。自从获得第一组fMRI图像以比较视觉区域在开或关时的视觉刺激响应以来,fMRI在这项研究中一直很重要视觉系统。 fMRI不仅扩展了我们对具有不同刺激和任务的人类视觉系统的了解,而且视觉系统还为理解fMRI信号的机理和测试新的分析方法提供了场所。我的三项研究遵循了功能磁共振成像方法与视觉系统发现之间这种富有成果的交互作用的传统,并且从第2章到第4章充分阐述了这三个项目。在第2章中,我们确定并解释了自发BOLD功能磁共振成像的相关结构。在低层视觉区域。我们测量了受试者闭眼休息,没有刺激或任何明确任务时的大胆反应。我们研究了在视觉皮层(V1-V3)中的精细测量的自发活动。我们发现,自发活动中最强的相关性是皮层上的点与功能性感受野之间的距离与视觉空间中凝视点的距离相同,而不管感受野是在同一象限还是在半视野中。迄今为止,尚无使用解剖学方法在视域中报告等偏心率连接的信息。我们使用模拟来确定来自至少两个具有不同视野周围覆盖度的较高皮质区域的时间变化和空间扩散的反馈是否可以提供这些发现的定量说明。 3,是建立一个信号强度响应模型,该模型考虑了跨不同视觉区域的类别特异性和注意效果。使用功能磁共振成像,我们进行了三个补充实验,观察者必须比较一对简短呈现图像的脸部或场景成分,每个都是脸部,场景和随机噪声模式的融合。我们发现,对每个非噪声图像组件(面部或场景)的BOLD响应在该组件的“信号比例”中是线性的,定义为该组件的对比能量与整个图像的对比能量之比。对于沿腹侧视觉通路的皮质区域,此线性函数的斜率取决于组件是否受到关注以及皮质区域是否首选该组件。皮质区域的净BOLD响应是对所有非噪声成分的响应的简单总和。我们通过证明适合于三个实验中的任何两个实验数据的模型可以验证此线性组分总和模型。我在第4章中描述的第三个研究的目标是来了解失调受试者的神经反应和大胆反应之间的关系。坐骨挫伤是一种罕见的先天性疾病,会阻止正常的视神经交叉发展。由于不存在视交叉症,视野的左半部分和右半部分投射到同一大脑半球,与起源眼同侧。在这样一个精神错乱的个体中,我们发现受试者视网膜区域V1-V3中的每个功能磁共振成像体素对视野中的两个位置均具有相同的响应。单个体素的这两个人口接收场(pRF)围绕垂直子午线镜像对称地定位。对比掩蔽和fMRI适应实验表明,这些pRF由数量和兴奋性相当的两个非相互作用神经元组提供。通过对这两个接受域提供相同的刺激,而不是仅仅对它们一个,我们可以使局部神经活动加倍,而不管“神经活动”的定义如何。使用这种体内模型,我们发现BOLD响应幅度大约与基础神经活动的平方根成比例。

著录项

  • 作者

    Bao, Pinglei.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号