首页> 外文学位 >Full-waveform and discrete-return lidar in salt marsh environments: An assessment of biophysical parameters, vertical uncertatinty, and nonparametric dem correction.
【24h】

Full-waveform and discrete-return lidar in salt marsh environments: An assessment of biophysical parameters, vertical uncertatinty, and nonparametric dem correction.

机译:盐沼环境中的全波形和离散返回激光雷达:生物物理参数,垂直不确定性和非参数dem校正的评估。

获取原文
获取原文并翻译 | 示例

摘要

High-resolution and high-accuracy elevation data sets of coastal salt marsh environments are necessary to support restoration and other management initiatives, such as adaptation to sea level rise. Lidar (light detection and ranging) data may serve this need by enabling efficient acquisition of detailed elevation data from an airborne platform. However, previous research has revealed that lidar data tend to have lower vertical accuracy (i.e., greater uncertainty) in salt marshes than in other environments. The increase in vertical uncertainty in lidar data of salt marshes can be attributed primarily to low, dense-growing salt marsh vegetation. Unfortunately, this increased vertical uncertainty often renders lidar-derived digital elevation models (DEM) ineffective for analysis of topographic features controlling tidal inundation frequency and ecology. This study aims to address these challenges by providing a detailed assessment of the factors influencing lidar-derived elevation uncertainty in marshes. The information gained from this assessment is then used to: 1) test the ability to predict marsh vegetation biophysical parameters from lidar-derived metrics, and 2) develop a method for improving salt marsh DEM accuracy.;Discrete-return and full-waveform lidar, along with RTK GNSS (Real-time Kinematic Global Navigation Satellite System) reference data, were acquired for four salt marsh systems characterized by four major taxa (Spartina alterniflora, Spartina patens, Distichlis spicata, and Salicornia spp.) on Cape Cod, Massachusetts. These data were used to: 1) develop an innovative combination of full-waveform lidar and field methods to assess the vertical distribution of aboveground biomass as well as its light blocking properties; 2) investigate lidar elevation bias and standard deviation using varying interpolation and filtering methods; 3) evaluate the effects of seasonality (temporal differences between peak growth and senescent conditions) using lidar data flown in summer and spring; 4) create new products, called Relative Uncertainty Surfaces (RUS), from lidar waveform-derived metrics and determine their utility; and 5) develop and test five nonparametric regression model algorithms (MARS -- Multivariate Adaptive Regression, CART -- Classification and Regression Trees, TreeNet, Random Forests, and GPSM -- Generalized Path Seeker) with 13 predictor variables derived from both discrete and full waveform lidar sources in order to develop a method of improving lidar DEM quality.;Results of this study indicate strong correlations for Spartina alterniflora (r > 0.9) between vertical biomass (VB), the distribution of vegetation biomass by height, and vertical obscuration (VO), the measure of the vertical distribution of the ratio of vegetation to airspace. It was determined that simple, feature-based lidar waveform metrics, such as waveform width, can provide new information to estimate salt marsh vegetation biophysical parameters such as vegetation height. The results also clearly illustrate the importance of seasonality, species, and lidar interpolation and filtering methods on elevation uncertainty in salt marshes. Relative uncertainty surfaces generated from lidar waveform features were determined useful in qualitative/visual assessment of lidar elevation uncertainty and correlate well with vegetation height and presence of Spartina alterniflora. Finally, DEMs generated using full-waveform predictor models produced corrections (compared to ground based RTK GNSS elevations) with R2 values of up to 0.98 and slopes within 4% of a perfect 1:1 correlation. The findings from this research have strong potential to advance tidal marsh mapping, research and management initiatives.
机译:沿海盐沼环境的高分辨率和高精度海拔数据集对于支持恢复和其他管理计划(例如适应海平面上升)是必要的。激光雷达(光检测和测距)数据可以通过从机载平台高效获取详细的海拔数据来满足这一需求。但是,先前的研究表明,与其他环境相比,盐沼中的激光雷达数据往往具有较低的垂直精度(即更大的不确定性)。盐沼激光雷达数据的垂直不确定性增加主要归因于盐沼植被茂密,生长缓慢。不幸的是,这种增加的垂直不确定性通常使激光雷达衍生的数字高程模型(DEM)无法有效地分析控制潮汐淹没频率和生态的地形特征。本研究旨在通过对影响激光雷达衍生的沼泽高程不确定性的因素进行详细评估来应对这些挑战。从评估中获得的信息然后用于:1)测试从激光雷达得出的指标预测沼泽植被生物物理参数的能力,以及2)开发一种提高盐沼DEM精度的方法。;离散返回和全波形激光雷达以及RTK GNSS(实时动态全球导航卫星系统)参考数据,是在马萨诸塞州科德角的四个盐沼系统中获得的,该盐沼系统具有四个主要分类群(互花米草,互花米草,Distichlis spicata和Salicornia spp。)。 。这些数据被用于:1)开发全波形激光雷达和现场方法的创新组合,以评估地上生物质的垂直分布及其遮光特性; 2)使用不同的插值和滤波方法研究激光雷达的仰角偏差和标准偏差; 3)使用夏季和春季飞行的激光雷达数据评估季节性的影响(峰值增长与衰老条件之间的时间差异); 4)根据激光雷达波形的度量标准创建新产品,称为相对不确定度表面(RUS),并确定其效用;和5)开发和测试五种非参数回归模型算法(MARS-多元自适应回归,CART-分类和回归树,TreeNet,随机森林和GPSM-广义路径搜索器),具有从离散和完全衍生的13个预测变量波形激光雷达源,以开发出一种改善激光雷达DEM质量的方法。这项研究的结果表明,互花米草(r> 0.9)与垂直生物量(VB),植被生物量按高度的分布以及垂直遮盖力( VO),即植被与空域之比的垂直分布的量度。已确定简单的基于特征的激光雷达波形度量标准(例如波形宽度)可以提供新的信息来估计盐沼植被生物物理参数(例如植被高度)。结果还清楚地说明了季节性,物种以及激光雷达插值和滤波方法对盐沼海拔高度不确定性的重要性。确定了由激光雷达波形特征生成的相对不确定性表面,可用于定性/视觉评估激光雷达高程不确定性,并且与植被高度和互花米草的存在密切相关。最后,使用全波形预测器模型生成的DEM产生的修正(与基于地面的RTK GNSS高程相比)的R2值最高为0.98,且斜率在理想1:1相关性的4%之内。这项研究的发现在推进潮汐沼泽测绘,研究和管理计划方面具有强大的潜力。

著录项

  • 作者

    Rogers, Jeffrey N.;

  • 作者单位

    University of New Hampshire.;

  • 授予单位 University of New Hampshire.;
  • 学科 Geology.;Biology Ecology.;Remote Sensing.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 265 p.
  • 总页数 265
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号