首页> 外文学位 >Geometric integration applied to moving mesh methods and degenerate Lagrangians.
【24h】

Geometric integration applied to moving mesh methods and degenerate Lagrangians.

机译:几何积分应用于移动网格方法并退化拉格朗日。

获取原文
获取原文并翻译 | 示例

摘要

Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used for the numerical simulation of time-dependent partial differential equations. These methods keep the total number of mesh points fixed during the simulation, but redistribute them over time to follow the areas where a higher mesh point density is required. There are a very limited number of moving mesh methods designed for solving field-theoretic partial differential equations, and the numerical analysis of the resulting schemes is challenging. In this thesis we present two ways to construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a variational discretization of the physical equations and the mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second method treats the mesh points as pseudo-particles and incorporates their dynamics directly into the variational principle. A user-specified adaptation strategy is then enforced through Lagrange multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss the advantages and limitations of our methods. The proposed methods are readily applicable to (weakly) non-degenerate field theories---numerical results for the Sine-Gordon equation are presented.;In an attempt to extend our approach to degenerate field theories, in the last part of this thesis we construct higher-order variational integrators for a class of degenerate systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying such systems and develop the appropriate theory for variational integration. Our main observation is that the evolution takes place on the primary constraint and the 'Hamiltonian' equations of motion can be formulated as an index 1 differential-algebraic system. We then proceed to construct variational Runge-Kutta methods and analyze their properties. The general properties of Runge-Kutta methods depend on the 'velocity' part of the Lagrangian. If the 'velocity' part is also linear in the position coordinate, then we show that non-partitioned variational Runge-Kutta methods are equivalent to integration of the corresponding first-order Euler-Lagrange equations, which have the form of a Poisson system with a constant structure matrix, and the classical properties of the Runge-Kutta method are retained. If the 'velocity' part is nonlinear in the position coordinate, we observe a reduction of the order of convergence, which is typical of numerical integration of DAEs. We also apply our methods to several models and present the results of our numerical experiments.
机译:移动网格方法(也称为r自适应方法)是用于时间相关的偏微分方程数值模拟的空间自适应策略。这些方法在模拟过程中使网格点的总数保持固定,但是会随着时间的推移重新分配它们,以遵循需要更高网格点密度的区域。设计用于求解场论偏微分方程的移动网格方法的数量非常有限,并且对所得方案进行数值分析具有挑战性。在本文中,我们提出了两种构造(1 + 1)维拉格朗日场论的r自适应变分和多辛积分器的方法。第一种方法使用物理方程的变分离散化,然后以现有r自适应方案的典型方式耦合网格方程。第二种方法将网格点视为伪粒子,并将它们的动力学直接纳入变分原理。然后,通过拉格朗日乘数强制执行用户指定的自适应策略,以约束物理场和网格点的动力学。我们讨论了我们方法的优点和局限性。所提出的方法很容易适用于(弱的)非退化场论---给出了Sine-Gordon方程的数值结果。为了扩大我们退化场论的方法,在本文的最后一部分,我们为拉格朗日描述的一类速度线性的简并系统构造高阶变分积分器。我们分析了此类系统的基础几何,并开发了适用于变分积分的理论。我们的主要观察结果是,进化发生在主要约束条件上,运动的“哈密尔顿”方程可以表述为指数1微分-代数系统。然后,我们继续构建变分Runge-Kutta方法并分析其性质。 Runge-Kutta方法的一般属性取决于Lagrangian的“速度”部分。如果“速度”部分在位置坐标中也是线性的,则表明非分区变分Runge-Kutta方法等效于相应的一阶Euler-Lagrange方程的积分,该方程具有Poisson系统的形式,其中一个恒定的结构矩阵,并保留了Runge-Kutta方法的经典属性。如果“速度”部分在位置坐标中是非线性的,则我们会观察到收敛阶数的减少,这是DAE数值积分的典型特征。我们还将我们的方法应用于几种模型,并给出了数值实验的结果。

著录项

  • 作者

    Tyranowski, Tomasz M.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号