首页> 外文学位 >Towards Understanding the Mixing Characteristics of Turbulent Buoyant Flows.
【24h】

Towards Understanding the Mixing Characteristics of Turbulent Buoyant Flows.

机译:试图理解湍流浮流的混合特性。

获取原文
获取原文并翻译 | 示例

摘要

This work proposes a new simulation methodology in which variable density turbulent flows can be studied in the context of a mixing layer with or without the presence of gravity. This methodology is developed to probe the nature of non-buoyantly-driven or buoyantly-driven mixing inside a mixing layer. Numerical forcing methods are incorporated into the velocity and scalar fields, extending the length of time over which mixing physics can be studied. The simulation framework is designed to allow for independent variation of four non-dimensional parameters, including the Reynolds, Richardson, Atwood, and Schmidt numbers. The governing equations are integrated in such a way to allow for the relative magnitude of buoyant energy production and non-buoyant energy production to be varied.;The computational requirements needed to implement the proposed configuration are presented. Key features of turbulent buoyant flows are reproduced as validation of the proposed methodology. These features include the recovery of isotropic Kolmogorov scales under buoyant and non-buoyant conditions, the recovery of anisotropic one-dimensional energy spectra under buoyant conditions, and the preservation of known statistical distributions in the scalar field, as found in other DNS studies.;This simulation method is used to perform a parametric study of turbulent buoyant flows to discern the effects of varying the Reynolds, Richardson, and Atwood numbers on mixing. The effects of the Reynolds and Atwood numbers are isolated by examining two energy dissipation rate conditions under non-buoyant (variable density) and constant density conditions. The effects of Richardson number are isolated by varying the ratio of buoyant energy production to total energy production from zero (non-buoyant) to one (entirely buoyant) under constant Atwood number, Schmidt number, and energy dissipation rate conditions. It is found that the primary differences between non-buoyant and buoyant turbulent flows are contained in the transfer spectrum and longitudinal structure functions, while all other metrics are largely similar. However, the scalar field dynamics are found to be similar whether the velocity field is subjected to buoyancy forces or not. Hence, the mixing dynamics in the scalar field are insensitive to the source of turbulent kinetic energy production (non-buoyant vs. buoyant).
机译:这项工作提出了一种新的模拟方法,其中可以在具有或不具有重力的情况下在混合层的情况下研究可变密度的湍流。开发这种方法是为了探讨混合层内部非浮力驱动或浮力驱动的混合的性质。数值强迫方法被纳入速度场和标量场,从而延长了可以研究混合物理学的时间长度。仿真框架旨在允许四个无量纲参数的独立变化,包括雷诺数,理查森数,阿特伍德数和施密特数。控制方程以这样的方式集成,以允许改变浮力发电量和非浮力发电量的相对大小。;提出了实现所提出的配置所需的计算要求。湍流浮力的关键特征被复制为所提出的方法的验证。这些特征包括在浮力和非浮力条件下各向同性Kolmogorov标尺的恢复,在浮力条件下各向异性一维能谱的恢复以及标量场中已知统计分布的保留,如其他DNS研究中发现的那样。该模拟方法用于对湍流浮力流进行参数研究,以识别改变雷诺数,理查森数和阿特伍德数对混合的影响。通过检查非浮力(可变密度)和恒定密度条件下的两个能量耗散率条件,可以隔离雷诺数和阿特伍德数的影响。通过在恒定的阿特伍德数,施密特数和能量耗散率条件下,将浮力发电量与总发电量之比从零(非浮力)改为一(全浮力)来隔离理查森数的影响。已经发现,非浮力和浮力湍流之间的主要差异包含在传递谱和纵向结构函数中,而所有其他度量在很大程度上相似。但是,无论速度场是否受到浮力的影响,标量场动力学都是相似的。因此,标量场中的混合动力学对产生湍动能的来源(非浮力与浮力)不敏感。

著录项

  • 作者

    Carroll, Phares L.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Mechanical.;Applied Mathematics.;Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号