首页> 外文学位 >Mitigating Differential Power Analysis Attacks on AES using NeuroMemristive Hardware.
【24h】

Mitigating Differential Power Analysis Attacks on AES using NeuroMemristive Hardware.

机译:使用NeuroMemristive硬件缓解对AES的差分功率分析攻击。

获取原文
获取原文并翻译 | 示例

摘要

Cryptographic algorithms such as the Advanced Encryption Standard (AES) are vulnerable to side channel attacks. AES was once thought to be impervious to attacks, but this proved to be true only for a mathematical model of AES, not a physical realization. Hard- ware implementations leak side channel information such as power dissipation. One of the practical SCA attacks is the Differential power analysis (DPA) attack, which statistically analyzes power measurements to find data-dependent correlations.;Several countermeasures against DPA have been proposed at the circuit and logic level in conventional technologies. These techniques generally include masking the data inside the algorithm or hiding the power profile. Next generation processors bring in additional challenges to mitigate DPA attacks, by way of heterogeneity of the devices used in the hardware realizations. Neuromemristive systems hold potential in this domain and also bring new challenges to the hardware security of cryptosystems.;In this exploratory work, a neuromemristive architecture was designed to compute an AES transformation and mitigate DPA attacks. The random power profile of the neuromemristive architecture reduces the correlations between data and power consumption. Hardware primitives, such as neuron and synapse circuits were developed along with a framework to generate neural networks in hardware.;An attack framework was developed to run DPA attacks using different leakage models. A baseline AES cryptoprocessor using only CMOS technology was attacked successfully.;The SubBytes transformation was replaced by a neuromemristive architecture, and the proposed designs were more resilient against DPA attacks at the cost of increased power consumption.
机译:诸如高级加密标准(AES)之类的密码算法容易受到边信道攻击。曾经有人认为AES不能抵御攻击,但是事实证明,这仅对AES的数学模型有效,而对物理实现却不成立。硬件实施会泄漏侧信道信息,例如功耗。实用的SCA攻击之一是差分功率分析(DPA)攻击,它可以对功率测量进行统计分析,以找到数据相关的相关性。在传统技术中,已经针对电路和逻辑级别提出了几种针对DPA的对策。这些技术通常包括在算法内部屏蔽数据或隐藏功率分布。下一代处理器通过硬件实现中使用的设备的异构性,带来了缓解DPA攻击的其他挑战。神经忆阻系统在这一领域具有潜力,也给密码系统的硬件安全性带来了新的挑战。神经忆阻架构的随机功率分布减少了数据与功耗之间的相关性。开发了诸如神经元和突触电路之类的硬件原语以及在硬件中生成神经网络的框架。开发了一种攻击框架,以使用不同的泄漏模型运行DPA攻击。仅使用CMOS技术的基准AES密码处理器受到了成功的攻击; SubBytes转换被神经记忆结构所取代,并且所提出的设计以增加功耗为代价,更能抵抗DPA攻击。

著录项

  • 作者

    Donahue, Colin R.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Engineering Computer.
  • 学位 M.S.
  • 年度 2014
  • 页码 71 p.
  • 总页数 71
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

  • 入库时间 2022-08-17 11:53:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号