首页> 外文学位 >Geometry and length scale selection in patterned interfaces with application to materials design.
【24h】

Geometry and length scale selection in patterned interfaces with application to materials design.

机译:图案化界面中的几何形状和长度比例选择在材料设计中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Material improvements in mechanical design have been long related to the chemical modification of its main constituents. In recent years, with the advance in new manufacturing process and material manipulation techniques at the macro-, micro-, and nano-scales, new promising strategies to enhance material performance without a variation on its intrinsic chemical configuration have become possible. In this research we focus on a novel concept by which morphological modifications at the material interface (e.g., geometrical patterns) can be used to significantly improve the interface resistance to crack propagation, towards the development of advanced fracture resistant materials.;A detailed combined computational/experimental approach is developed to unveil the crack propagation mechanisms and fracture toughness in interfaces with geometrical patterns (e.g. patterned interfaces). Computational analyses using the finite element numerical method are performed to study the role of the patterned geometry in the crack propagation where no analytic governing equations have been developed yet.;A series of double cantilever beam tests were also designed, developed and executed to evaluate the range of validity of the numerical simulation results. Key relationships between the interface resistance to crack propagation and the pattern geometry in the mm-scale were also obtained from the experimental tests analysis. Using linear elastic fracture mechanics, the J-integral method and the cohesive zone model we were able to develop a series of interface design guidelines for fracture resistant material design. The interface fracture toughness was studied with respect to the pattern size and shape, considering failure mechanisms at different material length scales, and between identical and bimaterial interfaces. The role of material elastic-plastic deformation in the toughening with patterned interfaces was also studied. Many results were obtained from the analyses preformed. For example, it was found that on bimaterial interfaces, the pattern geometry can be designed to improve fracture toughness by enhancing plastic deformation. We also found that depending on the bimaterial elastic mismatch, mechanisms such as discontinuous crack growth can reduce the resistance to crack propagation in the interface. We were able to relate the length scale of the fracture process zone to the geometry of the pattern and the interface fracture toughness, and we also developed several simple analytic equations that can be used to explain many mechanisms associated to interface toughening. As such, this research represents a step towards the understanding of crack propagation resistance in patterned interfaces, where the fracture resistance optimization by the modification of their interface morphology at multiple scales is the ultimate goal.
机译:长期以来,机械设计中的材料改进一直与其主要成分的化学改性有关。近年来,随着新的制造工艺和宏观,微米和纳米级材料处理技术的进步,增强材料性能而不改变其固有化学结构的新的有希望的策略已成为可能。在这项研究中,我们集中于一个新颖的概念,通过该概念,可以使用材料界面处的形态修改(例如,几何图案)来显着提高界面对裂纹扩展的抵抗力,从而开发出先进的抗断裂材料。 / experimental方法被开发出来,以揭示具有几何图案的界面(例如,有图案的界面)中的裂纹扩展机理和断裂韧性。进行了使用有限元数值方法的计算分析,以研究图案化几何图形在裂纹扩展中的作用,而尚未建立解析控制方程。;还设计,开发和执行了一系列双悬臂梁测试来评估数值模拟结果的有效范围。还通过实验测试分析获得了界面抗裂纹扩展能力和毫米级图案几何形状之间的关键关系。使用线性弹性断裂力学,J积分方法和内聚区模型,我们能够为抗断裂材料设计制定一系列界面设计指南。考虑到不同材料长度尺度下以及相同和双材料界面之间的破坏机理,研究了关于图案尺寸和形状的界面断裂韧性。还研究了材料弹塑性变形在带图案界面的增韧中的作用。从预先进行的分析中获得了许多结果。例如,发现在双材料界面上,可以将图案几何形状设计为通过增强塑性变形来提高断裂韧性。我们还发现,取决于双材料的弹性失配,诸如不连续裂纹扩展的机制可以降低对界面中裂纹扩展的抵抗力。我们能够将断裂过程区域的长度尺度与图案的几何形状和界面断裂韧性相关联,并且我们还开发了几个简单的解析方程式,可以用来解释许多与界面韧性相关的机理。因此,这项研究代表了朝向理解图案化界面中的裂纹扩展阻力的一步,其中通过在多个尺度上改变其界面形态来优化抗断裂性是最终目标。

著录项

  • 作者

    Cordisco, Fernando Agustin.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号