首页> 外文学位 >Manganese Promoted CO Hydrogenation Catalysts: A Study of Metal Promoter Interaction Effects.
【24h】

Manganese Promoted CO Hydrogenation Catalysts: A Study of Metal Promoter Interaction Effects.

机译:锰促进的CO加氢催化剂:金属促进剂相互作用的研究。

获取原文
获取原文并翻译 | 示例

摘要

The aim of the work described in this thesis is to investigate the rational design of promoted metal catalysts for CO hydrogenation reactions. The main body of this work focuses on the use of simple techniques and common elemental precursors to improve the interactions in between a promoter and active metal. One of the many ways of achieving this is through the use of Strong Electrostatic Adsorption (SEA). Special attention to the surface charging parameters of mixed oxide as a function of solution pH can create a driving force to selectively adsorb a precursor complex onto a single phase of a binary mixture.;The use of promoters is ubiquitous in CO hydrogenation reactions to increase active metal's activities as well as the selectivity towards desired products. Although, the precise active site of promoters in reactions and how they interact with active metals to react the reactants require many more studies, it is agreed that a key design objective is to increase the metal-promoter interactions. This work demonstrates a procedure to achieve this with Mn promoter catalysts.;In Chapter 1, we present an introduction and a brief review of CO hydrogenation catalysts for both the conversion of syngas to alcohols (particularly ethanol) and, additionally the conversion of syngas to long-chained hydrocarbons in a typical Fischer- Tropsch (FT) reaction. In Chapter 2, the fundamentals of the Transmission Electron Microscope (TEM) and its applications on catalysis related projects are presented. Chapter 3 gives a detailed discussion for rational design to selectively adsorb a [MnO4]- promoter precursor over a Rh2O3/SiO2 supported catalyst. Various techniques (ICP, STEM-EELS, XANES, EXAFS, TPR) were utilized to study the intrinsic properties of the catalysts and how the different catalysts preparation method could affect the metalpromoter interactions. The alcohol (ethanol) synthesis reactivity measurement also gave us key insight to the role of the promoter as a function of metal-promoter interactions. In Chapter 4, we focus on the rational design of the selective adsorption of a [MnO4]- precursor over a Co3O4/TiO2 supported catalyst, in this study, catalysts with three metalpromoter interactions (namely Mn monolayer coverage on Co, Mn partial coverage on Co and least Mn interaction with Co) were made and the different metal-promoter interactions were visualized by the STEM-EELS analysis, the F-T reactivity results demonstrated that the catalyst which has the strongest Mn-Co interaction (Mn monolayer coverage on Co) has the highest selectivity towards C5+ hydrocarbons (desired product). In Chapter 5, we continue discussing the CO hydrogenation for alcohol synthesis (especially ethanol). However in this chapter, we studied the metal-promoter interaction effects over Mn promoted Rh catalysts supported on multi-walled carbon nanotubes (CNTs) by just using the normal impregnation (DI, dry impregnation) catalysts preparation method. The enhanced Mn interaction with Rh particles was achieved by increasing the Mn loading (2 wt% Mn vs 1 wt% Mn loading), and the enhancement was visualized and quantified by STEM-EELS analysis due to the virtue of CNTs support (low Z number of C). Once again, in the reactivity results, the catalyst with stronger Mn- Rh interactions exhibited higher selectivity towards ethanol.;This thesis ends with main conclusion that the key of rational catalysts design is to enhance the metal-promoter interactions, which can be achieved by either selectively adsorbing promoter onto the active metal or simply increasing the promoter loading by impregnation method. By focusing the intrinsic principles of catalyst preparation, this concept of stronger metal-promoter interactions can be applied to a wide range of catalytic materials to help define the promoter's precise roles in various catalytic reactions.
机译:本文所描述的工作目的是研究用于CO加氢反应的促进型金属催化剂的合理设计。这项工作的重点是使用简单的技术和常见的元素前体来改善促进剂和活性金属之间的相互作用。实现此目的的许多方法之一是通过使用强静电吸附(SEA)。特别注意混合氧化物的表面电荷参数随溶液pH的变化会产生驱动力,以选择性地将前体复合物吸附到二元混合物的单相上;在CO加氢反应中普遍使用促进剂来增加活性金属的活性以及对所需产品的选择性。尽管促进剂在反应中的精确活性位点以及它们如何与活性金属相互作用以使反应物发生反应还需要进行大量研究,但公认的主要设计目标是增加金属-促进剂的相互作用。这项工作展示了用Mn助催化剂实现这一目标的程序。在第一章中,我们对用于将合成气转化为醇(尤其是乙醇)以及另外将合成气转化为CO的CO加氢催化剂进行了介绍和简要介绍。典型的费-托(FT)反应中的长链烃。在第二章中,介绍了透射电子显微镜(TEM)的基本原理及其在催化相关项目中的应用。第三章详细讨论了合理设计,以在Rh2O3 / SiO2负载的催化剂上选择性吸附[MnO4]-促进剂前体。利用各种技术(ICP,STEM-EELS,XANES,EXAFS,TPR)研究了催化剂的固有性质,以及不同催化剂的制备方法如何影响金属促进剂的相互作用。醇(乙醇)合成反应性的测量也使我们对促进剂作为金属-促进剂相互作用的作用有了重要的认识。在第4章中,我们着重于[MnO4]-前体在Co3O4 / TiO2负载的催化剂上的选择性吸附的合理设计,在本研究中,该催化剂具有三种金属促进剂相互作用(即Co上的Mn单层覆盖,Co上的Mn部分覆盖)。进行了Co和最少的Mn与Co的相互作用,并通过STEM-EELS分析显示了不同的金属-促进剂相互作用,FT反应性结果表明,具有最强的Mn-Co相互作用(Co上的Mn单层覆盖)的催化剂具有对C5 +烃(所需产物)的最高选择性。在第5章中,我们继续讨论用于醇合成(特别是乙醇)的CO加氢。然而,在本章中,我们仅使用常规浸渍(DI,干浸渍)催化剂的制备方法,研究了多壁碳纳米管(CNT)上负载的Mn促进Rh催化剂上金属-促进剂的相互作用。通过增加Mn的负载量(2 wt%的Mn与1 wt%的Mn的负载)可以增强与Rh颗粒的Mn相互作用,由于碳纳米管的支持(低Z值),通过STEM-EELS分析可以直观地看到和量化这种增强作用C)。再次,在反应性结果中,具有更强Mn-Rh相互作用的催化剂对乙醇表现出更高的选择性。选择性地将促进剂吸附到活性金属上,或通过浸渍法简单地增加促进剂的负载量。通过关注催化剂制备的内在原理,这种更强的金属-促进剂相互作用概念可以应用于各种催化材料,以帮助确定助催化剂在各种催化反应中的精确作用。

著录项

  • 作者

    Liu, Jingjing.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Engineering Chemical.;Alternative Energy.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号