首页> 外文学位 >Disease management in apples using trunk injection delivery of plant protective compounds.
【24h】

Disease management in apples using trunk injection delivery of plant protective compounds.

机译:苹果使用树干注射植物保护化合物的疾病管理。

获取原文
获取原文并翻译 | 示例

摘要

The two most important pathogens of apple Erwinia amylovora (fire blight) and Venturia inaequalis (apple scab) require pesticide sprays for control. This leads to accumulating side effects such as disease resistance, contamination of environment, elevated fungicide residues in fruit, and increased health risks to consumers and workers. While sprays are effective for disease control, need for increasing the sustainability of apple production by reducing pesticide use in the environment incited our research on delivering pesticides via trunk injection. This method delivers the compound into the canopy via tree xylem and could increase the efficiency in disease control. To find out how, where and when injected compounds distribute in the apple tree, thus affecting the efficiency in pest control, we injected imidacloprid through 1, 2, 4, or 8 injection ports per tree. By quantifying leaf residues we demonstrated variable spatial distribution of imidacloprid in the canopy. Spatial uniformity of distribution increased with more injection ports and 4 ports provided uniform distribution. To demonstrate the efficiency of injected compounds in fire blight and apple scab control we injected apple trees with antibiotics, plant resistance inducers, and fungicides. Antibiotics, potassium phosphites (PJ) and acibenzolar-S-methyl (ASM) provided weak control of blossom and shoot blight while oxytetracycline was the most efficient. ASM and PJ significantly expressed PR-1, 2, and 8 protein genes showing resistance activation in apple leaves (SAR) which suppressed the pathogen. Four injections of PJ in spring controlled leaf apple scab for 2 seasons, similar to 2 seasons of standard sprays. To optimize injections for apple scab control we evaluated 1-2 and 4 cross-seasonal and 1-2 seasonal injections of PJ and fungicides. PJ provided better scab control than propiconazole, cyprodinil and difenoconazole and showed better or equal and more persistent scab control with fewer injections than sprays. Control varied among canopy organs due to different transpiration, with best scab control on shoots, fruit, and then spurs. Good scab control is provided by 2-3 spring injections. Residues of synthetic fungicides in fruit were always below the residue tolerances. Fall injection did not improve apple scab control. To get temporally uniform imidacloprid distribution in the crown, best results were achieved by injection dose delivery at 4 times, 14 days apart. Injection method comparison showed that drill-based injection of the liquid imidacloprid formulation provided the highest residue concentration in the canopy when compared to other injection methods. Comparison of 7 trunk injection devices showed that drill-based devices did not provide higher residue concentration of cyprodinil and difenoconazole in apple leaf canopy when compared to needle-insertion device Bite, while Wedgle was similar. All the injection devices allowed similar apple scab control with fungicides. When monitoring the rate of trunk injection port healing in apple trees, we found that port closure with callus lasted for 1-1.3 and >2 years depending on the port size and type. Port closure was faster on the ports with smaller diameters. Around all injection port types, bark cracking due to frost events was higher in vertical direction of the trunk. The visible port depth declined faster on port from 11/64" drill bit and on lenticular injection port from double-edge blade, versus the port from 3/8" drill bit. When the port from 3/8" drill bit was sealed with an Arborplug, visible and covered port depths significantly increased in time due to callus formation on the top and laterally, around the plug. Overall, trunk injection of injection formulated pesticides could be a viable option for disease control in apples with minimal impact of injection ports on the tree.
机译:苹果小球藻欧文氏病(火疫病)和不等金星霉(苹果sc)的两种最重要的病原体需要喷洒农药进行控制。这导致累积的副作用,例如抗病性,环境污染,水果中杀菌剂残留量增加以及对消费者和工人的健康风险增加。尽管喷雾剂可有效控制疾病,但需要通过减少环境中的农药使用量来提高苹果生产的可持续性,这激发了我们通过树干注射法输送农药的研究。该方法通过木质部将化合物输送到树冠中,可以提高疾病控制的效率。为了了解注入的化合物如何,在何时何地分布在苹果树上,从而影响害虫防治的效率,我们通过每棵树的1、2、4或8个注入口注入了吡虫啉。通过定量叶残留量,我们证明了吡虫啉在冠层中的可变空间分布。分布空间的均匀性随着更多的注入端口而增加,并且四个端口提供了均匀分布。为了证明注射化合物在火疫病和苹果赤霉病防治中的功效,我们向苹果树注射了抗生素,植物抗性诱导剂和杀真菌剂。抗生素,亚磷酸钾(PJ)和苯并噻唑-S-甲基(ASM)对开花和枯萎病的控制较弱,而土霉素则最为有效。 ASM和PJ显着表达PR-1、2和8个蛋白基因,在抑制病原体的苹果叶片(SAR)中显示出抗性激活。在春季控制的叶片苹果黑星病中进行四次PJ注射,持续2个季节,与标准喷雾剂的2个季节相似。为了优化控制苹果黑星病的注射剂,我们评估了PJ和杀菌剂的1-2个和4个跨季节注射和1-2个季节性注射。 PJ比丙环唑,环丙地尼和苯乙康唑更好地控制了结ab,并且与喷雾剂相比,注射次数更少,表现出更好或相等的持久性结ab控制。由于蒸腾作用的不同,冠层器官之间的控制也不同,对芽,果实和马刺的sc控制效果最好。 2-3次弹簧注射可以很好地控制sc疮。水果中合成杀真菌剂的残留始终低于残留限量。秋季注射并不能改善苹果黑星病的控制。为了使吡虫啉在冠状结构上获得时间上均匀的分布,最好通过间隔4天,间隔14天的注射剂量来达到最佳效果。注射方法的比较显示,与其他注射方法相比,液体吡虫啉制剂的基于钻头的注射提供了最高的残留浓度。对7种躯干注射装置的比较表明,与针头插入装置Bite相比,基于钻头的装置没有在苹果叶冠层中提供更高的环丙啶和双氟康唑残留浓度,而Wedgle相似。所有的注射装置都可以用杀真菌剂控制类似的苹果黑星病。监控苹果树树干注入端口愈合的速率时,我们发现,随着端口的大小和类型的不同,愈伤组织的端口关闭持续了1-1.3年和> 2年。直径较小的端口的端口关闭速度更快。在所有类型的注入口周围,由于霜冻事件引起的树皮开裂在树干的垂直方向上较高。与从3/8“钻头开始的端口相比,从11/64”钻头开始的端口和双刃刀片的双凸透镜注射端口的可见端口深度下降得更快。当用Arborplug密封3/8“钻头的端口时,由于顶部和侧面,在塞子周围形成愈伤组织,可见端口和覆盖端口的时间随时间显着增加。总体而言,注射式农药的树干注入可能是苹果病害控制的可行选择,且注射孔对树的影响最小。

著录项

  • 作者

    Acimovic, Srdan Goran.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Agriculture Plant Pathology.;Agriculture Food Science and Technology.;Agriculture Horticulture.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 362 p.
  • 总页数 362
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号