首页> 外文学位 >Uncertainty in the Bifurcation Diagram of a Model of Heart Rhythm Dynamics.
【24h】

Uncertainty in the Bifurcation Diagram of a Model of Heart Rhythm Dynamics.

机译:心律动力学模型的分叉图中的不确定性。

获取原文
获取原文并翻译 | 示例

摘要

To understand the underlying mechanisms of cardiac arrhythmias, computational models are used to study heart rhythm dynamics. The parameters of these models carry inherent uncertainty. Therefore, to interpret the results of these models, uncertainty quantification (UQ) and sensitivity analysis (SA) are important. Polynomial chaos (PC) is a computationally efficient method for UQ and SA in which a model output Y, dependent on some independent uncertain parameters represented by a random vector xi, is approximated as a spectral expansion in multidimensional orthogonal polynomials in xi. The expansion can then be used to characterize the uncertainty in Y.;PC methods were applied to UQ and SA of the dynamics of a two-dimensional return-map model of cardiac action potential duration (APD) restitution in a paced single cell. Uncertainty was considered in four parameters of the model: three time constants and the pacing stimulus strength. The basic cycle length (BCL) (the period between stimuli) was treated as the control parameter. Model dynamics was characterized with bifurcation analysis, which determines the APD and stability of fixed points of the model at a range of BCLs, and the BCLs at which bifurcations occur. These quantities can be plotted in a bifurcation diagram, which summarizes the dynamics of the model. PC UQ and SA were performed for these quantities. UQ results were summarized in a novel probabilistic bifurcation diagram that visualizes the APD and stability of fixed points as uncertain quantities.;Classical PC methods assume that model outputs exist and reasonably smooth over the full domain of xi. Because models of heart rhythm often exhibit bifurcations and discontinuities, their outputs may not obey the existence and smoothness assumptions on the full domain, but only on some subdomains which may be irregularly shaped. On these subdomains, the random variables representing the parameters may no longer be independent. PC methods therefore must be modified for analysis of these discontinuous quantities. The Rosenblatt transformation maps the variables on the subdomain onto a rectangular domain; the transformed variables are independent and uniformly distributed. A new numerical estimation of the Rosenblatt transformation was developed that improves accuracy and computational efficiency compared to existing kernel density estimation methods. PC representations of the outputs in the transformed variables were then constructed. Coefficients of the PC expansions were estimated using Bayesian inference methods. For discontinuous model outputs, SA was performed using a sampling-based variance-reduction method, with the PC estimation used as an efficient proxy for the full model.;To evaluate the accuracy of the PC methods, PC UQ and SA results were compared to large-sample Monte Carlo UQ and SA results. PC UQ and SA of the fixed point APDs, and of the probability that a stable fixed point existed at each BCL, was very close to MC UQ results for those quantities. However, PC UQ and SA of the bifurcation BCLs was less accurate compared to MC results.;The computational time required for PC and Monte Carlo methods was also compared. PC analysis (including Rosenblatt transformation and Bayesian inference) required less than 10 total hours of computational time, of which approximately 30 minutes was devoted to model evaluations, compared to approximately 65 hours required for Monte Carlo sampling of the model outputs at 1 x 106 xi points.;PC methods provide a useful framework for efficient UQ and SA of the bifurcation diagram of a model of cardiac APD dynamics. Model outputs with bifurcations and discontinuities can be analyzed using modified PC methods. The methods applied and developed in this study may be extended to other models of heart rhythm dynamics. These methods have potential for use for uncertainty and sensitivity analysis in many applications of these models, including simulation studies of heart rate variability, cardiac pathologies, and interventions.
机译:为了了解心律不齐的潜在机制,使用计算模型来研究心律动态。这些模型的参数具有固有的不确定性。因此,要解释这些模型的结果,不确定性量化(UQ)和灵敏度分析(SA)很重要。多项式混沌(PC)是一种针对UQ和SA的高效计算方法,其中依赖于由随机矢量xi表示的一些独立不确定参数的模型输出Y近似为xi的多维正交多项式中的谱展开。然后,可以使用展开来表征Y中的不确定性。PC方法应用于UQ和SA中有节奏的单细胞中心脏动作电位持续时间(APD)恢复的二维返回图模型动力学的UQ和SA。在模型的四个参数中考虑了不确定性:三个时间常数和起搏刺激强度。基本周期长度(BCL)(两次刺激之间的间隔)被当作控制参数。模型动力学通过分叉分析进行表征,分叉分析确定了在一系列BCL以及发生分叉的BCL时模型的固定点的APD和稳定性。这些数量可以绘制在分叉图中,其中概括了模型的动力学。对这些数量执行PC UQ和SA。 UQ结果总结在一个新颖的概率分叉图中,该图将APD和固定点的稳定性可视化为不确定量。;经典PC方法假设存在模型输出并且在xi的整个域内都相当平滑。由于心律模型经常表现出分叉和不连续性,因此它们的输出可能不服从完整域的存在和平滑假设,而只能服从可能不规则形状的某些子域。在这些子域上,代表参数的随机变量可能不再是独立的。因此,必须修改PC方法以分析这些不连续量。 Rosenblatt变换将子域上的变量映射到矩形域上。变换后的变量是独立且均匀分布的。与现有的核密度估计方法相比,开发了Rosenblatt变换的新数值估计,可以提高准确性和计算效率。然后构建转换变量中输出的PC表示。使用贝叶斯推断方法估计PC扩展的系数。对于不连续的模型输出,使用基于采样的方差减少方法执行SA,并将PC估计用作完整模型的有效代理。;为了评估PC方法的准确性,将PC UQ和SA结果进行了比较:大样本蒙特卡洛UQ和SA结果。定点APD的PC UQ和SA,以及每个BCL上存在稳定的定点的可能性,与这些数量的MC UQ结果非常接近。但是,分叉BCL的PC UQ和SA与MC结果相比准确性较差。;还比较了PC和Monte Carlo方法所需的计算时间。 PC分析(包括Rosenblatt变换和贝叶斯推断)所需的总计算时间少于10小时,其中大约30分钟用于模型评估,而在1 x 106 xi的模型输出中进行蒙特卡洛采样需要大约65小时PC方法为心脏APD动力学模型的分叉图的有效UQ和SA提供了有用的框架。可以使用改进的PC方法分析具有分支和不连续性的模型输出。在这项研究中应用和开发的方法可能会扩展到心律动力学的其他模型。这些方法有潜力用于这些模型的许多应用中的不确定性和敏感性分析,包括心率变异性,心脏病理学和干预措施的模拟研究。

著录项

  • 作者

    Ring, Caroline L.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 227 p.
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号