首页> 外文学位 >Experimental study on the use of synthetic jet actuators for lift control.
【24h】

Experimental study on the use of synthetic jet actuators for lift control.

机译:使用合成射流执行器进行升程控制的实验研究。

获取原文
获取原文并翻译 | 示例

摘要

An experimental study on the use of synthetic jet actuators for lift control is conducted. The synthetic jet actuator is placed on the pressure side towards the trailing edge on a NACA 65(2)-415 airfoil representative of the cross section of an Inlet Guide Vane (IGV) in an industrial gas compressor. By redirecting or vectoring the shear layer at the trailing edge, the synthetic jet actuator increases lift and decreases drag on the airfoil without a mechanical device or flap.;A compressor map that defines upper and lower bounds on operating velocities and airfoil dimensions, is compared with operating conditions of the low-speed wind tunnel at San Diego State University, to match gas compressor conditions in the wind tunnel. Realistic test conditions can range from Mach=0.12 to Mach= 0.27 and an airfoil chord from c=0.1 m to c=0.3 m. Based on the operating conditions, a final airfoil model is fabricated with a chord of c=0.1m.;Several synthetic jet actuator designs are considered. A initial synthetic jet is designed to house a piezoelectric element with a material frequency of 1200 hz in a cavity with a volume of 4.47 cm3, a slot width of 0.25 mm, and a slot depth of 1.5 mm. With these dimensions, the Helmholtz frequency of the design is 1800Hz. Particle Image Velocimetry (PIV) experiments show that the design has a jet with a peak centerline jet velocity of 26 m/s at 750 Hz. A modified slant face synthetic jet is designed so that the cavity fits flush within the NACA airfoil surface. The slanted synthetic jet has a cavity volume of 4.67 cm3, a slot width of 0.25 mm, and a slot depth of 3.45 mm resulting in a Helmholtz frequency of 1170 hz for this design. PIV experiments show that the jet is redirected along the slant face according to the Coanda effect. A final synthetic jet actuator is directly integrated into the trailing edge of an airfoil with a cavity volume of 4.6 cm3, a slot width of 0.2 mm, and a slot depth of 1.6 mm. The Helmholtz frequency is 1450 Hz and matches closely with the piezoelectric element material frequency. The slot is designed so that actuator creates a jet normal to the airfoil surface.;A wind tunnel model of the airfoil is 3D-printed with nine actuators integrated along the span of the airfoil. The synthetic jet slots cover 61% of the airfoil's span and the synthetic jet slots are located at a 13% chord upstream of the trailing edge. Tests are performed at multiple free stream velocities ranging from 17 m/s to 54 m/s which is the equivalent of an airfoil Reynolds number of Re=1.5105 to Re=4.5105.;The integrated synthetic jet actuator increases lift. The increase is dependent on the freestream velocity, the actuation frequency, and angle of attack. For actuation at 1450 hz, and various freestream velocities, the synthetic jet actuator increases the lift by 2% at = alpha7° to 7% at = alpha15°. The synthetic jet increases L/D by 2% at = alpha7° to 15% at = alpha15°. Velocity contours obtained through PIV show that the synthetic jet turns the trailing edge shear layer similar to a Gurney flap, which increases lift. The synthetic jet reduces the wake velocity defect through injection of momentum, reducing the drag on the airfoil.
机译:进行了使用合成射流执行器进行升程控制的实验研究。将合成射流执行器置于压力侧,朝向NACA 65(2)-415翼型件的后缘,该翼型代表工业气体压缩机中入口导流叶片(IGV)的横截面。通过重定向或引导尾翼处的剪切层,合成射流致动器在没有机械装置或襟翼的情况下增加了升力并减小了翼型上的阻力。;比较了定义操作速度和翼型尺寸上下限的压缩机图符合圣地亚哥州立大学低速风洞的运行条件,以匹配风洞中的气体压缩机条件。实际的测试条件范围可以从Mach = 0.12到Mach = 0.27,翼型弦从c = 0.1 m到c = 0.3 m。根据工作条件,最终弦翼模型的弦长为c = 0.1m。考虑了几种合成射流致动器设计。最初的合成射流被设计为将材料频率为1200 hz的压电元件容纳在体积为4.47 cm3,缝隙宽度为0.25 mm,缝隙深度为1.5 mm的空腔中。通过这些尺寸,设计的亥姆霍兹频率为1800Hz。粒子图像测速(PIV)实验表明,该设计的射流在750 Hz处的峰值中心线射流速度为26 m / s。设计了改进的斜面合成射流,使腔体与NACA机翼表面齐平。倾斜的合成射流的腔体体积为4.67 cm3,缝隙宽度为0.25 mm,缝隙深度为3.45 mm,导致此设计的亥姆霍兹频率为1170 Hz。 PIV实验表明,根据柯恩达效应,射流沿着倾斜面重新定向。最终的合成射流致动器直接集成到型腔的后缘中,腔体体积为4.6 cm3,缝隙宽度为0.2 mm,缝隙深度为1.6 mm。亥姆霍兹频率为1450 Hz,与压电元件材料频率紧密匹配。插槽的设计使执行器产生垂直于机翼表面的射流。机翼的风洞模型是3D打印的,沿机翼跨度集成了九个执行器。合成喷嘴槽占翼型跨度的61%,合成喷嘴槽位于后缘上游的弦长13%处。在从17 m / s到54 m / s的多个自由流速度下进行测试,这相当于Re = 1.5105到Re = 4.5105的翼型雷诺数。集成的合成射流致动器会增加升力。该增加取决于自由流速度,致动频率和迎角。对于在1450 Hz下的驱动以及各种自由流速度,合成射流驱动器将升力在α7°处增加了2%,在α15°处增加了7%。合成射流将L / D在=α7°时的L / D值提高了2%,在=α15°时的L / D值提高了15%。通过PIV获得的速度轮廓表明,合成射流使后缘剪切层类似于格尼襟翼,从而增加了升力。合成射流通过注入动量减少了尾流速度缺陷,从而减小了机翼上的阻力。

著录项

  • 作者

    Torres, Ricardo Benjamin.;

  • 作者单位

    San Diego State University.;

  • 授予单位 San Diego State University.;
  • 学科 Aerospace engineering.
  • 学位 M.S.
  • 年度 2014
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号