首页> 外文学位 >Gallium Nitride Based Heterostructure Interband Tunnel Junctions.
【24h】

Gallium Nitride Based Heterostructure Interband Tunnel Junctions.

机译:基于氮化镓的异质结构带间隧道结。

获取原文
获取原文并翻译 | 示例

摘要

This thesis describes the design, molecular beam epitaxy growth, fabrication and characterization of Gallium Nitride (GaN)-based interband tunnel junctions (TJs) surpassing the state-of-the-art device performance. GaN and AlGaN-based TJs are attractive for hole injection in visible, and ultraviolet light emitters, respectively. Tunnel junctions enable monolithic integration of multiple active regions for multi-color light emitters and multi-junction solar cells. A major outstanding issue with the visible emitters is the efficiency droop problem, which refers to the reduction in efficiency of a light emitting diode at higher operating current density. Efficient TJs are attractive to overcome this issue as it enables epitaxial cascading of identical active regions, and a low current-high voltage operation of the cascaded structure. In such a structure, the carriers are regenerated at the tunnel junction sites and each of the individual active regions can be operated at its peak efficiency. In this work, two nanoscale heterostructure band engineering approaches, namely, polarization engineering and midgap states assisted tunneling, are used to demonstrate low resistance Gallium Nitride tunnel junctions. In the case of the polarization-based approach, the high spontaneous and piezoelectric polarization sheet charge at the GaN/InGaN heterointerface is utilized to create large band bending over a few nanometers, thereby reducing the tunneling barrier width. Such polarization engineered GaN/InGaN/GaN tunnel junctions are used to demonstrate record reverse current and tunneling under forward bias, leading to the first observation of interband tunneling-related negative differential resistance in III-nitrides. Tunnel hole injection in a GaN PN junction with a tunneling specific resistivity as low as 10-4 Ohm cm2 is achieved using this approach. The second approach involves the use of embedded Gadolinium Nitride (GdN) nano-islands for inter-band tunneling in GaN. By creating midgap states for tunneling, the tunnel barrier is effectively halved, leading to an increase in the tunneling current. Using this approach, a tunneling specific resistivity of 10-3 Ohm cm2 is obtained. GdN-based and InGaN-based TJs are then regrown on a blue light emitting diode (LED) wafer for non-equilibrium tunnel injection of holes. The regrowth interface depletion is found to increase the forward voltage of the tunnel junction LEDs. Finally, tunnel injection of holes is extended to wider band gap Al0.3Ga0.7N, which is attractive for incorporation in ultra-violet and deep ultra-violet emitters. The low tunneling resistance achieved in this work is promising for efficient hole injection in UV/deep UV light emitters and epitaxial cascaded light emitters to eliminate efficiency droop.
机译:本文介绍了基于氮化镓(GaN)的带间隧道结(TJ)的设计,分子束外延生长,制造和表征,该技术超越了最新的器件性能。 GaN和AlGaN基TJ分别对可见光发射器和紫外光发射器中的空穴注入具有吸引力。隧道结可实现多个有源区域的单片集成,以实现多色发光体和多结太阳能电池。可见光发射器的一个主要突出问题是效率下降问题,这是指在较高工作电流密度下发光二极管的效率降低。高效的TJ吸引了克服这一问题的吸引力,因为它可以将相同的有源区外延层叠,并可以级联结构实现低电流-高电压操作。在这种结构中,载流子在隧道结位点处再生,并且每个单独的有源区都可以以其峰值效率工作。在这项工作中,使用两种纳米级异质结构能带工程方法,即极化工程和中能隙态辅助隧穿,来证明低电阻氮化镓隧道结。在基于极化的方法中,GaN / InGaN异质界面处的高自发性和压电极化片电荷可用于在几纳米处产生大的能带弯曲,从而减小隧道势垒宽度。这种极化工程设计的GaN / InGaN / GaN隧道结用于演示记录的反向电流和正向偏置下的隧穿,从而首次观察到III型氮化物中与带间隧穿相关的负微分电阻。使用此方法可实现GaN PN结中的隧道空穴注入,其隧道电阻率低至10-4 Ohm cm2。第二种方法涉及使用嵌入式氮化镓(GdN)纳米岛在GaN中进行带间隧穿。通过创建用于隧道的中间能隙状态,可将隧道势垒有效地减半,从而导致隧道电流增加。使用这种方法,可以获得10-3 Ohm cm2的隧穿比电阻。然后,在蓝色发光二极管(LED)晶片上重新生长基于GdN和基于InGaN的TJ,以非平衡隧道注入空穴。发现再生界面耗尽会增加隧道结LED的正向电压。最后,空穴的隧道注入被扩展到更宽的带隙Al0.3Ga0.7N,这对于掺入紫外线和深紫外线发射器中很有吸引力。在这项工作中实现的低隧穿电阻有望在紫外/深紫外光发射器和外延级联光发射器中进行有效的空穴注入,以消除效率下降。

著录项

  • 作者

    Krishnamoorthy, Sriram.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号