首页> 外文学位 >Na+ Transport and Toxicity in Plants.
【24h】

Na+ Transport and Toxicity in Plants.

机译:Na +在植物中的运输和毒性。

获取原文
获取原文并翻译 | 示例

摘要

Soil salinity is an urgent and global agricultural problem, affecting more than 80 million hectares of arable land. While sodium can be benign and even beneficial to plants at low concentrations, severe toxicity symptoms are found in many species at high, saline, concentrations. Toxicity is initiated by the entry of Na+ into root systems, a process that, despite much research effort, remains poorly characterized. Currently, a scenario of rapid, energy-intensive Na+ cycling across the plasma membrane of root cells stands as the leading model describing Na+ transport under salinity. In this model, Na+ enters the cytosol passively, at very high rates, then is actively pumped back to the outer medium at nearly equal rates. However, the physiological, energetic, and toxicological foundations of rapid Na+ cycling have been called into question. The experiments in this thesis test the plausibility of this model, using the radioisotope 24Na+ in conjunction with respiratory, electrophysiological, photometric (tissue-content), and fluorescent-dye measurements. Sodium-flux pathways in root and shoot systems were measured in barley (Hordeum vulgare L.), rice (Oryza sativa L.), wheat (Triticum aestivum L.), maize (Zea mays L.), and the genetic model plant Arabidopsis thaliana L., in which transport mutants were examined. Startlingly, Na+ fluxes were resistant to alteration by powerful inhibitors, and found to be malleable only under special conditions, such as nutrient deprivation during growth, or long tracer-desorption times during measurement. In this respect, the fluxes did not resemble those of nutrient ions such as NH4+, NO3-, and K+, whose uptake behaviours are highly malleable and well-characterized. It is concluded that the rapid-cycle model of Na+ transport is not valid, and the non-malleable fluxes comprising the cycle are a phenomenon distinct from membrane transport, instead proceeding extracellularly. Consequentially, many fluxes reported in the literature may have to be reinterpreted in terms of their energetic and physiological plausibility. These findings address some fundamental questions about Na+ fluxes and provide a physiological framework for future studies of Na+ transport.
机译:土壤盐分是一个迫在眉睫的全球性农业问题,影响了超过8000万公顷的耕地。虽然钠在低浓度下可能有益于植物,甚至对植物有益,但在高盐浓度下的许多物种中都发现了严重的毒性症状。毒性是由Na +进入根系引起的,尽管进行了大量研究工作,但该过程的特征仍然很差。当前,跨越根细胞质膜快速,高耗能的Na +循环的情景是描述盐度下Na +转运的主要模型。在该模型中,Na +以很高的速率被动进入细胞质,然后以几乎相等的速率主动泵回外部介质。然而,快速Na +循环的生理,能量和毒理学基础已受到质疑。本文中的实验使用放射性同位素24Na +结合呼吸,电生理,光度法(组织含量)和荧光染料测量来测试该模型的合理性。在大麦(Hordeum vulgare L.),水稻(Oryza sativa L.),小麦(Triticum aestivum L.),玉米(Zea mays L.)和遗传模型植物拟南芥中测量了根系和芽系中的钠通量途径。 Thaliana L.,其中检查了运输突变体。令人惊讶的是,Na +通量对强力抑制剂的改变具有抵抗力,并且发现其仅在特殊条件下才具有延展性,例如生长过程中营养物质的缺乏或测量过程中示踪剂解吸时间的延长。在这方面,通量与营养离子如NH4 +,NO3-和K +的通量不同,它们的吸收行为具有很高的延展性和良好的特性。结论是Na +转运的快速循环模型是无效的,并且构成该循环的不可破坏的通量是不同于膜转运的现象,而是在细胞外进行。因此,文献中报道的许多通量可能必须根据其能量和生理学合理性进行重新解释。这些发现解决了有关Na +通量的一些基本问题,并为以后的Na +转运研究提供了生理框架。

著录项

  • 作者

    Schulze, Lasse Michael.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Botany.;Agriculture.;Plant sciences.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号