首页> 外文学位 >Mammary Epithelial Cells Cultured onto Non-Woven Nanofiber Electrospun Silk- Based Biomaterials to Engineer Breast Tissue Models.
【24h】

Mammary Epithelial Cells Cultured onto Non-Woven Nanofiber Electrospun Silk- Based Biomaterials to Engineer Breast Tissue Models.

机译:将乳腺上皮细胞培养到无纺纳米纤维静电纺丝基生物材料上,以工程化乳房组织模型。

获取原文
获取原文并翻译 | 示例

摘要

Breast cancer is one of the most common types of cancer affecting women in the world today. To better understand breast cancer initiation and progression modeling biological tissue under physiological conditions is essential. Indeed, breast cancer involves complex interactions between mammary epithelial cells and the stroma, both extracellular matrix (ECM) and cells including adipocytes (fat tissue) and fibroblasts (connective tissue). Therefore, the engineering of in vitro three-dimensional (3D) systems of breast tissues allows a deeper understanding of the complex cell-cell and cell-ECM interactions involved during breast tissue development and cancer initiation and progression. Furthermore, such 3D systems may provide a viable alternative to investigate new drug or drug regimen and to model and monitor concurrent cellular processes during tumor growth and invasion. The development of suitable 3D in vitro models relies on the ability to mimic the microenvironment, the structure, and the functions of the breast tissue. Different approaches to develop a novel 3D breast model have been investigated. Most models use gel scaffolds, including MatrigelRTM and collagen to generate breast tissue-like structures. However, the physicochemical, mechanical, and geometrical properties of these scaffolds only partially meet the mechanical, physical, and chemical parameters of the breast tissue matrix.;In the present studies, we investigated the overall hypothesis that electrospun SF-derived scaffolds promote mammary cell growth and the formation of mammary-like structures depending on the composition and/or coating of the scaffolds with ECM proteins. Through an extensive literature search (1) the importance of 3D modeling of tissues and organs in vivo, (2) 3D modeling of the mammary tissue and currently available models, (3) the properties and applications of SF in tissue modeling and regeneration were reviewed (Chapter 1). Our studies provide evidence of the effects of various concentrations (Chapter 2) of SF along with different electrospinning techniques (Chapter 3) on the structure of electrospun scaffolds and whether those scaffolds provide suitable microenvironments for mammary epithelial cells as determined by MCF10A cell attachment, viability, and structure formation. Further, we investigated the effects of the key ECM proteins collagen I (Chapter 4) and laminin (Chapter 5) used to blend or coat, respectively, SF scaffolds on the attachment, viability and structure formation of mammary epithelial cells. Our studies first highlight the mechanical and physical properties of the different SF-derived scaffolds through various SF concentrations and electrospinning techniques. Second, the biocompatibility of these SF electrospun scaffolds was defined based on MCF10A cell survival and adhesion. Third, our data indicate that scaffolds derived from blended and/or coated SF with collagen I also promoted human mammary cell survival and adhesion. Lastly, our observations suggest that on laminin-coated SF scaffolds MCF10A mammary cells, in the presence of lactogenic hormones, differentiated forming acinus-like structures. Overall, these studies provide evidence that SF electrospun scaffolds closely mimic the structure of the ECM fibers and allow many advantages such as; physical and chemical modification of the microenvironment by varying electrospinning parameters and addition of various proteins, hormones, and growth factors, respectively. Further, coating these SF scaffolds with essential ECM proteins, in particular laminin, promote cell-ECM interactions necessary for cell differentiation and formation of growth-arrested structures, through providing cell integrin binding sites and appropriate chemical cues.
机译:乳腺癌是当今世界影响女性的最常见癌症之一。为了更好地了解乳腺癌的发生和发展,在生理条件下对生物组织进行建模至关重要。确实,乳腺癌涉及乳腺上皮细胞与基质之间的复杂相互作用,细胞外基质(ECM)和包括脂肪细胞(脂肪组织)和成纤维细胞(结缔组织)在内的细胞。因此,对乳腺组织的体外三维(3D)系统进行工程设计,可以更深入地了解在乳腺组织发育以及癌症的发生和发展过程中涉及的复杂的细胞-细胞和细胞-ECM相互作用。此外,这样的3D系统可以提供可行的替代方案,以研究新药或新药方案以及在肿瘤生长和侵袭期间对并发的细胞过程进行建模和监测。合适的3D体外模型的开发依赖于模拟乳腺微环境,结构和功能的能力。已经研究了开发新颖的3D乳房模型的不同方法。大多数模型都使用包括MatrigelRTM和胶原蛋白在内的凝胶支架来生成乳房组织样结构。然而,这些支架的物理化学,机械和几何特性仅部分满足乳腺组织基质的机械,物理和化学参数。在本研究中,我们研究了电纺自SF支架促进乳腺细胞的总体假设。取决于ECM蛋白的支架的组成和/或涂层,其生长和乳腺状结构的形成。通过广泛的文献搜索(1)体内组织和器官的3D建模的重要性,(2)乳腺组织的3D建模和当前可用的模型,(3)回顾了SF在组织建模和再生中的特性和应用(第1章)。我们的研究提供了各种浓度(第2章)和不同的电纺技术(第3章)对静电纺丝支架结构的影响的证据,以及这些支架是否通过MCF10A细胞附着,存活力确定了是否为乳腺上皮细胞提供了合适的微环境。 ,并形成结构。此外,我们研究了分别用于混合或涂覆SF支架的关键ECM蛋白胶原蛋白I(第4章)和层粘连蛋白(第5章)对乳腺上皮细胞的附着,生存能力和结构形成的影响。我们的研究首先通过各种SF浓度和静电纺丝技术突出了不同SF衍生支架的机械和物理性能。其次,基于MCF10A细胞存活和粘附来定义这些SF电纺丝支架的生物相容性。第三,我们的数据表明,源自与胶原蛋白I混合和/或包被的SF的支架还促进了人类乳腺细胞的存活和粘附。最后,我们的观察结果表明,在层粘连蛋白包被的SF支架上,MCF10A乳腺细胞在存在促乳激素的情况下,分化形成了腺泡样结构。总体而言,这些研究提供了SF静电纺丝支架紧密模仿ECM纤维的结构并具有许多优势的证据,例如:通过改变静电纺丝参数并分别添加各种蛋白质,激素和生长因子来对微环境进行物理和化学修饰。此外,通过提供细胞整联蛋白结合位点和适当的化学提示,用必需的ECM蛋白(尤其是层粘连蛋白)包被这些SF支架,可促进细胞分化和生长停滞结构的形成所必需的细胞ECM相互作用。

著录项

  • 作者

    Maghdouri-White, Yas.;

  • 作者单位

    Virginia Commonwealth University.;

  • 授予单位 Virginia Commonwealth University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号