首页> 外文学位 >The Impact of Nitrate Radical Chemistry on Air Quality Modeling for Arid Conditions.
【24h】

The Impact of Nitrate Radical Chemistry on Air Quality Modeling for Arid Conditions.

机译:硝酸根化学对干旱条件下空气质量建模的影响。

获取原文
获取原文并翻译 | 示例

摘要

The nitrate radical (NO3) is an important oxidant found in the troposphere during the nighttime. Studies show that nocturnal chemical processes involving NO3 can remove reactive nitrogen oxides (NOx) from the atmosphere subsequently affecting ozone production on the next day. A modeling analysis has been performed of nitrate radical measurements made during a four-week field campaign in an arid urban area located over Reno, Nevada. NO3 measurements were made with a long path Differential Optical Absorbance Spectrometry (DOAS) instrument. Measurements of ozone (O3), nitric oxide (NO), total nitrogen (NOy), sulfur dioxide (SO 2) and carbon monoxide (CO) were available and also included in the analysis.;During the field study, typical concentrations of nitrate radical ranged from 5 to 20 parts per trillion (ppt) with elevated concentrations that were observed during a wildfire event. A chemical box model that incorporated the Regional Atmospheric Chemistry Mechanism, version 2 (RACM2) (Goliff et al., 2012) was used for the study. Process analysis of the model simulations showed that NO3 chemistry was a significant loss process for olefins, isoprene, a-pinene, and dienes. Nitrate radical also reacted very strongly with aldehydes (acetaldehyde and formaldehyde) to form nitric acid (HNO 3). In some cases, NO3 effectively removed NOx from the atmosphere; however it did not significantly impact ozone formation on subsequent days. For the cases presented here, inorganic chemistry had the biggest influence on NO3 mixing ratios. In contrast to previous studies, these findings suggest that ozone production is not controlled or limited by NOx under urban arid desert-like conditions. The results of this study are crucial for advancing our understanding of urban nighttime chemistry, providing better air quality control strategies and ultimately improving multi-day air quality forecast models.
机译:硝酸根(NO3)是夜间在对流层中发现的重要氧化剂。研究表明,涉及NO3的夜间化学过程可以从大气中去除反应性氮氧化物(NOx),从而在第二天影响臭氧的产生。在位于内华达州里诺市的干旱市区,进行了为期四周的野战,对硝酸根自由基测量进行了建模分析。 NO 3的测量是使用长程差示吸收光谱法(DOAS)进行的。可以测量臭氧(O3),一氧化氮(NO),总氮(NOy),二氧化硫(SO 2)和一氧化碳(CO)的方法,该方法也包括在内。自由基的浓度范围从5到20万亿分之一(ppt),在野火事件中观察到的浓度升高。该研究使用了结合了区域大气化学机制第2版(RACM2)的化学盒模型(Goliff等,2012)。对模型模拟的过程分析表明,对于烯烃,异戊二烯,α-pine烯和二烯,NO3化学反应是一个重大损失过程。硝酸根也与醛(乙醛和甲醛)发生非常强烈的反应,形成硝酸(HNO 3)。在某些情况下,NO3有效地从大气中去除了NOx。但是,它对随后几天的臭氧形成没有明显影响。对于此处介绍的情况,无机化学对NO3混合比的影响最大。与以前的研究相比,这些发现表明在城市干旱的沙漠状条件下,臭氧的产生不受NOx的控制或限制。这项研究的结果对于增进我们对城市夜间化学反应的理解,提供更好的空气质量控制策略并最终改善多日空气质量预测模型至关重要。

著录项

  • 作者

    Lawson, Charlene V.;

  • 作者单位

    Howard University.;

  • 授予单位 Howard University.;
  • 学科 Atmospheric Chemistry.;Chemistry General.;Environmental Sciences.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号