首页> 外文学位 >Geometric Pursuit Evasion.
【24h】

Geometric Pursuit Evasion.

机译:几何追踪逃避。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation we investigate pursuit evasion problems set in geometric environments. These games model a variety of adversarial situations in which a team of agents, called pursuers, attempts to catch a rogue agent, called the evader. In particular, we consider the following problem: how many pursuers, each with the same maximum speed as the evader, are needed to guarantee a successful capture? Our primary focus is to provide combinatorial bounds on the number of pursuers that are necessary and sufficient to guarantee capture.;The first problem we consider consists of an unpredictable evader that is free to move around a polygonal environment of arbitrary complexity. We assume that the pursuers have complete knowledge of the evader's location at all times, possibly obtained through a network of cameras placed in the environment. We show that regardless of the number of vertices and obstacles in the polygonal environment, three pursuers are always sufficient and sometimes necessary to capture the evader. We then consider several extensions of this problem to more complex environments. In particular, suppose the players move on the surface of a 3-dimensional polyhedral body; how many pursuers are required to capture the evader? We show that 4 pursuers always suffice (upper bound), and that 3 are sometimes necessary (lower bound), for any polyhedral surface with genus zero. Generalizing this bound to surfaces of genus g, we prove the sufficiency of (4g + 4) pursuers. Finally, we show that 4 pursuers also suffice under the "weighted region" constraints, where the movement costs through different regions of the (genus zero) surface have (different) multiplicative weights.;Next we consider a more general problem with a less restrictive sensing model. The pursuers' sensors are visibility based, only providing the location of the evader if it is in direct line of sight. We begin my making only the minimalist assumption that pursuers and the evader have the same maximum speed. When the environment is a simply-connected (hole-free) polygon of n vertices, we show that &THgr;(n1/2 ) pursuers are both necessary and sufficient in the worst-case. When the environment is a polygon with holes, we prove a lower bound of Ω( n2/3 ) and an upper bound of O( n5/6 ) pursuers, where n includes the vertices of the hole boundaries. However, we show that with realistic constraints on the polygonal environment these bounds can be drastically improved. Namely, if the players' movement speed is small compared to the features of the environment, we give an algorithm with a worst case upper bound of O(log n) pursuers for simply-connected n-gons and O(√h + log n) for polygons with h holes.;The final problem we consider takes a small step toward addressing the fact that location sensing is noisy and imprecise in practice. Suppose a tracking agent wants to follow a moving target in the two-dimensional plane. We investigate what is the tracker's best strategy to follow the target and at what rate does the distance between the tracker and target grow under worst-case localization noise. We adopt a simple but realistic model of relative error in sensing noise: the localization error is proportional to the true distance between the tracker and the target. Under this model we are able to give tight upper and lower bounds for the worst-case tracking performance, both with or without obstacles in the Euclidean plane.
机译:本文研究了几何环境下的追击逃避问题。这些游戏模拟了各种对抗情况,在这种情况下,一组称为追随者的特工试图捉住一个被称为逃避者的流氓特工。特别是,我们考虑以下问题:为了确保成功捕获,需要多少个追踪者,每个追踪者的最大速度与躲避者相同。我们的主要重点是对确保捕获的必要和充分数量的追赶者数量提供组合范围。我们考虑的第一个问题是不可预测的逃避者,可以自由地在任意复杂的多边形环境中移动。我们假设追随者始终对逃避者的位置有完全的了解,这可能是通过放置在环境中的摄像机网络获得的。我们表明,无论多边形环境中的顶点和障碍物有多少,三个追赶者总是足够的,有时也有必要捕捉逃避者。然后,我们考虑将此问题扩展到更复杂的环境。特别是,假设玩家在3维多面体的表面上移动;需要多少名追随者才能捕获逃避者?我们证明,对于任何属零的多面体曲面,4个追踪者总是足够的(上限),有时3个是必需的(下限)。推广到g属表面,我们证明了(4g + 4)追踪者的充分性。最后,我们表明在“加权区域”约束下4个追踪者也足够了,其中通过(类零)曲面的不同区域的移动成本具有(不同的)乘性权重;接下来,我们考虑一个限制性较小的更普遍的问题感应模型。追踪者的传感器基于可见性,仅在直接视线范围内提供躲避者的位置。我们仅以最低限度的假设开始,即追随者和逃避者具有相同的最大速度。当环境是n个顶点的简单连接(无孔)多边形时,我们证明在最坏的情况下&THgr;(n1 / 2)追踪器既必要又足够。当环境是一个带孔的多边形时,我们证明了Ω(n2 / 3)的下限和O(n5 / 6)追踪器的上限,其中n包括孔边界的顶点。但是,我们表明,在多边形环境上施加实际约束时,可以大大改善这些边界。即,如果玩家的移动速度与环境特征相比较小,我们给出了一个最坏情况下的O(log n)追踪者上限的算法,用于简单连接的n边形和O(√h+ log n ;对于具有h孔的多边形。;我们考虑的最后一个问题朝着解决位置感应在实践中嘈杂且不精确的事实迈出了一步。假设跟踪代理想要在二维平面中跟踪移动目标。我们研究了跟踪器跟随目标的最佳策略是什么,以及在最坏情况下的定位噪声下跟踪器与目标之间的距离以什么速率增长。我们在感测噪声时采用相对误差的简单但现实的模型:定位误差与跟踪器与目标之间的真实距离成比例。在此模型下,我们能够给出最坏情况下的跟踪性能的严格上限和下限,无论在欧几里得平面上有无障碍物。

著录项

  • 作者

    Klein, Kyle Thomas.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号