首页> 外文学位 >Orchestrating electron transfer for solar-powered water photolysis using iridium(III) photosensitizers.
【24h】

Orchestrating electron transfer for solar-powered water photolysis using iridium(III) photosensitizers.

机译:使用铱(III)光敏剂协调用于太阳能水光解的电子转移。

获取原文
获取原文并翻译 | 示例

摘要

The growing demands of the human civilization will ultimately require the increased use of alternative energy sources in order to sustain our growing current population and improving median quality of life. As the Sun is Earth's most plentiful energy source, the development of technologies that convert the supplied radiant energy into a more convenient fuel is logical. Such an approach, being analogous to photosynthesis, allows for the decoupling of energy use from supply. The majority of radiant energy provided by the Sun is thermodynamically capable of powering the photolysis of water to produce molecular hydrogen and oxygen, and therefore, dihydrogen has been considered a potential photosynthetic target that could be combusted, used in a fuel cell, or converted into liquid fuel through the hydrogenation of various substrates. However, the absorption of sunlight by water is negligible, and more importantly, contemporary catalysts operate at potentials that greatly exceed the thermodynamic requirement. As a result, there is a great need to develop new catalytic systems that are capable of both water reduction and oxidation. The work presented herein is aimed at understanding and developing photocatalytic water reduction systems that use an iridium(III) chromophore and a colloidal catalyst. The described system provides the study of decomposition products, while the parameter space of the reaction is probed using a high-throughput photoreactor. Furthermore, observing the modes of photosensitizer decomposition allowed for the design of an iridium complex with a novel architecture that demonstrates superior stability and photochemical properties. Finally, photosensitizing species were covalently attached to a polymer matrix in an effort to develop a polymer film that could compartmentalize water oxidation from reduction.
机译:人类文明的日益增长的需求最终将最终要求更多地使用替代能源,以维持我们目前不断增长的人口并改善中位数生活质量。由于太阳是地球上最丰富的能源,因此将提供的辐射能转换为更方便的燃料的技术开发是合乎逻辑的。类似于光合作用的这种方法允许能量使用与供应分离。太阳提供的大部分辐射能在热力学上能够为水的光解提供动力,从而产生分子氢和氧,因此,二氢被认为是潜在的光合作用靶,可以燃烧,用在燃料电池中或转化成通过氢化各种底物的液体燃料。但是,水对太阳光的吸收可以忽略不计,更重要的是,现代催化剂的工作电势大大超过了热力学要求。结果,迫切需要开发能够同时进行水还原和氧化的新型催化体系。本文介绍的工作旨在理解和开发使用铱(III)生色团和胶体催化剂的光催化减水系统。所描述的系统提供了对分解产物的研究,同时使用高通量光反应器探测了反应的参数空间。此外,观察光敏剂分解的模式允许设计具有新颖结构的铱配合物,该新颖结构显示出优异的稳定性和光化学性质。最后,将光敏物质共价连接到聚合物基质上,以开发一种聚合物膜,该膜可以分隔水的氧化还原。

著录项

  • 作者

    Tinker, Leonard L.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Alternative Energy.;Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号