首页> 外文学位 >Three Dimensional Dynamics of Micro Tools and Miniature Ultra-High-Speed Spindles.
【24h】

Three Dimensional Dynamics of Micro Tools and Miniature Ultra-High-Speed Spindles.

机译:微型工具和微型超高速主轴的三维动力学。

获取原文
获取原文并翻译 | 示例

摘要

Application of mechanical micromachining for fabricating complex three-dimensional (3D) micro-scale features and small parts on a broad range of materials has increased significantly in the recent years. In particular, mechanical micromachining finds applications in manufacturing of biomedical devices, tribological surfaces, energy storage/conversion systems, and aerospace components. Effectively addressing the dual requirements for high accuracy and high throughput for micromachining applications necessitates understanding and controlling of dynamic behavior of micromachining system, including positioning stage, spindle, and the (micro-) tool, as well as their coupling with the mechanics of the material removal process. The dynamic behavior of the tool-collet-spindle-machine assembly, as reflected at the cutting edges of a micro-tool, often determines the achievable process productivity and quality. However, the common modeling techniques (such as beam based approaches) used in macro-scale to model the dynamics of cutting tools, cannot be used to accurately and efficiently in micro-scale case. Furthermore, classical modal testing techniques poses significant challenges in terms of excitation and measurement requirements, and thus, new experimental techniques are needed to determine the speed-dependent modal characteristics of miniature ultra-high-speed (UHS) spindles that are used during micromachining.;The overarching objective of this thesis is to address the aforementioned issues by developing new modeling and experimental techniques to accurately predict and analyze the dynamics of micro-scale cutting tools and miniature ultra-high-speed spindles, including rotational effects arising from the ultra high rotational speeds utilized during micromachining, which are central to understanding the process stability. Accurate prediction of the dynamics of micromachining requires (1) accurate and numerically-efficient analytical approach to model the rotational dynamics of realistic micro-tool geometries that will capture non-symmetric bending and coupled torsional/axial dynamics including the rotational/gyroscopic effects; and (2) new experimental approaches to accurately determine the speed-dependent dynamics of ultra-high-speed spindles. The dynamic models of cutting tools and ultra-high-speed spindles developed in this work can be coupled together with a mechanistic micromachining model to investigate the process stability of mechanical micromachining.;To achieve the overarching research objective, first, a new three-dimensional spectral-Tchebychev approach is developed to accurately and efficiently predict the dynamics of (micro) cutting tools. In modeling the cutting tools, considering the efficiency and accuracy of the solution, a unified modeling approach is used. In this approach, the shank/taper/extension sections, vibrational behavior of which exhibit no coupling between different flexural motion, of the cutting tools are modeled using one-dimensional (1D) spectral-Tchebychev (ST) approach; whereas the fluted section (that exhibits coupled vibrational behavior) is modeled using the developed 3D-ST approach. To obtain the dynamic model for the entire cutting tool, a component mode synthesis approach is used to 'assemble' the dynamic models.;Due to the high rotational speeds needed to attain high material removal rate while using micro tools, the gyroscopic/rotational effects should be included in predicting the dynamic response at any position along the cutting edges of a micro-tool during its operation. Thus, as a second step, the developed solution approach is improved to include the effects arising from the high rotational speeds. The convergence, accuracy, and efficiency of the presented solution technique is investigated through several case studies. It is shown that the presented modeling approach enables high-fidelity dynamic models for (micro-scale) cutting-tools.;Third, to accurately model the dynamics of miniature UHS spindles, that critically affect the tool-tip motions, a new experimental (modal testing) methodology is developed. To address the deficiency of traditional dynamic excitation techniques in providing the required bandwidth, repeatability, and impact force magnitudes for accurately capturing the dynamics of rotating UHS spindles, a new impact excitation system (IES) is designed and constructed. The developed system enables repeatable and high-bandwidth modal testing of (miniature and compliant) structures, while controlling the applied impact forces on the structure. Having developed the IES, and established the experimental methodology, the speed-dependent dynamics of an air bearing miniature spindle is characterized.;Finally, to show the broad impact of the develop modeling approach, a macro-scale endmill is modeled using the presented modeling technique and coupled to the dynamics of a (macro-scale) spindle, that is obtained experimentally, to predict the tool-point dynamics.;Specific contributions of this thesis research include: (1) a new 3D modeling approach that can accurately and efficiently capture the dynamics of pretwisted structures including gyroscopic effects, (2) a novel IES for repeatable, high-bandwidth modal testing of miniature and compliant structures, (3) an experimental methodology to characterize and understand the (speed-dependent) dynamics of miniature UHS spindles.
机译:近年来,机械微加工在多种材料上制造复杂的三维(3D)微米级特征和小零件的应用显着增加。特别地,机械微加工在生物医学设备,摩擦学表面,能量存储/转换系统和航空航天部件的制造中得到应用。有效地满足微加工应用对高精度和高生产量的双重要求,需要理解和控制微加工系统的动态行为,包括定位台,主轴和(微)工具,以及它们与材料力学的耦合删除过程。在微型工具的切削刃处所反映出的工具-夹头-主轴-机器组件的动态行为通常决定了可实现的过程生产率和质量。但是,在宏观尺度下用于模拟切削刀具动力学的通用建模技术(例如基于射束的方法)无法在微观尺度下准确有效地使用。此外,传统的模态测试技术在激励和测量要求方面提出了严峻的挑战,因此,需要新的实验技术来确定微细加工中使用的微型超高速(UHS)主轴的速度相关模态特性。 ;本论文的总体目标是通过开发新的建模和实验技术来解决上述问题,以准确地预测和分析微型切削刀具和微型超高速主轴的动力学,包括超高切削引起的旋转效应微机械加工过程中使用的转速,这对于了解工艺稳定性至关重要。精确预测微加工的动力学需要(1)精确且数值高效的分析方法来对现实的微型工具几何形状的旋转动力学建模,该几何形状将捕获非对称弯曲以及包括旋转/陀螺效应在内的扭转/轴向动力学耦合; (2)新的实验方法可以准确地确定超高速主轴的速度相关动力学。这项工作中开发的刀具和超高速主轴的动力学模型可以与机械微加工模型结合使用,以研究机械微加工的过程稳定性。;要达到总体研究目标,首先,需要一个新的三维Spectrum-Tchebychev方法是为了准确有效地预测(微型)切削刀具的动力学而开发的。在对切削工具进行建模时,考虑到解决方案的效率和准确性,使用了统一的建模方法。在这种方法中,使用一维(1D)频谱切比雪夫(ST)方法对切削工具的柄/锥度/延伸部分(其振动行为在不同弯曲运动之间没有耦合)进行建模;而凹槽部分(表现出耦合的振动行为)是使用开发的3D-ST方法建模的。为了获得整个切削工具的动态模型,使用了一种零件模式综合方法来“组合”动态模型。由于使用微型工具时要达到较高的材料去除率需要很高的旋转速度,因此陀螺/旋转效应在预测微型工具在其操作过程中沿其切削刃的任何位置的动态响应时,都应包括在内。因此,作为第二步骤,改进了开发的解决方案方法以包括由高转速引起的影响。通过几个案例研究了提出的解决方案技术的收敛性,准确性和效率。结果表明,所提出的建模方法为(微型)切削刀具提供了高保真动态模型。第三,精确地建模微型UHS主轴的动力学,这对刀尖运动产生了至关重要的影响,这是一项新的实验(模态测试)方法得以发展。为了解决传统动态激励技术在提供所需带宽,可重复性和冲击力大小以准确捕获旋转的UHS主轴动力学方面的不足,设计并构建了一种新的冲击激励系统(IES)。开发的系统可以对(微型和顺应性)结构进行可重复的高带宽模态测试,同时控制对结构施加的冲击力。在开发了IES并建立了实验方法之后,表征了空气轴承微型主轴的速度相关动力学。最后,为了显示开发建模方法的广泛影响,使用提出的模型对大型立铣刀进行了建模。技术,并与通过实验获得的(大型)主轴的动力学耦合,以预测刀具点的动力学。本论文的主要贡献包括:(1)一种新的3D建模方法,可以准确有效地捕获包括陀螺效应在内的预扭曲结构的动力学;(2)一种可重复使用的新型IES,微型和顺应性结构的高带宽模态测试,(3)一种表征和理解微型UHS主轴(与速度有关)动力学的实验方法。

著录项

  • 作者

    Bediz, Bekir.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号