首页> 外文学位 >Optical control of electron spins in diamond.
【24h】

Optical control of electron spins in diamond.

机译:金刚石中电子自旋的光学控制。

获取原文
获取原文并翻译 | 示例

摘要

By choosing the right system and using the right techniques, it is possible to achieve reliable control of an individual quantum system in a solid. Certain atom-like solid-state systems are especially suited for this goal. The electron spin of the diamond nitrogen-vacancy (NV) impurity center is a leader among such systems and has featured in a great deal of recent experimental work in the context of various quantum technologies. By extending optical control for the NV center we increase the utility of this system, opening it up to fresh applications in quantum optics.;Doing quantum control with a solid-state spin comes with its own challenges. In particular it can be difficult to simultaneously isolate single systems, both for control and from environment-induced decoherence, while also coupling multiple systems together in a controlled way. A goal of the work presented in this dissertation is to develop techniques for answering this problem in the NV center.;Optical control, as opposed to the microwave control usually used for state manipulation in the NV center, would make it easier to address only one spin system at a time. We demonstrate such control using two methods, two-photon optically driven Rabi oscillations and stimulated Raman adiabatic passage. These both have the added advantage that by using Raman-resonant, dipole-detuned optical fields, they protect the spin state from the decoherence normally associated with the optical transitions. Furthermore, we see that this electron spin control is nuclear spin dependent, providing a mechanism for coupling these two spin systems.;We also investigate a decoherence reduction technique that involves coupling continuous microwave fields to the spin states. The resulting "dressed states" are shielded from spin-bath-induced magnetic field fluctuations. We confirm this using optical coherent population trapping measurements which we have also developed in the NV center. We show that these measurements are sensitive to nuclear spin states as well as to dressed states.;These results supply the missing piece, optical spin manipulation, to control schemes that are all-optical, and they demonstrate ways to significantly push back the decoherence limit.;This dissertation includes previously published and unpublished co-authored material.
机译:通过选择正确的系统并使用正确的技术,可以对固体中的单个量子系统进行可靠的控制。某些类似于原子的固态系统特别适合该目标。金刚石氮空位(NV)杂质中心的电子自旋是此类系统中的佼佼者,并且在各种量子技术的背景下,最近的大量实验工作中都具有这种特征。通过扩展NV中心的光学控制,我们增加了该系统的实用性,将其开放给量子光学领域的新应用。用固态自旋进行量子控制面临着自己的挑战。特别是,很难同时将单个系统(用于控制和与环境引起的去相干性隔离)隔离,同时还要以受控方式将多个系统耦合在一起。本文提出的工作目标是开发一种在NV中心解决此问题的技术。与通常用于NV中心状态操纵的微波控制相反,光学控制将使其更易于解决一个问题。一次旋转系统。我们展示了使用两种方法的控制,两光子光学驱动的拉比振荡和受激拉曼绝热通道。两者都具有额外的优势,即通过使用拉曼共振,偶极子失谐的光学场,它们可以保护自旋状态免受通常与光学跃迁相关的退相干的影响。此外,我们看到这种电子自旋控制依赖于核自旋,为耦合这两个自旋系统提供了一种机制。我们还研究了消相干减少技术,该技术涉及将连续微波场耦合至自旋态。所产生的“修整状态”不受自旋浴引起的磁场波动的影响。我们使用在NV中心也开发的光学相干人口捕获测量来确认这一点。我们证明了这些测量对核自旋态和整修态都敏感。这些结果提供了缺失的部分,光学自旋操纵,以控制全光学方案,并且它们展示了显着降低退相干极限的方法。;本文包括以前发表和未发表的合著材料。

著录项

  • 作者

    Golter, David Andrew, II.;

  • 作者单位

    University of Oregon.;

  • 授予单位 University of Oregon.;
  • 学科 Condensed matter physics.;Optics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号