首页> 外文学位 >Organization and evolution of transcription factor occupancy in the human genome.
【24h】

Organization and evolution of transcription factor occupancy in the human genome.

机译:人类基因组中转录因子占据的组织和进化。

获取原文
获取原文并翻译 | 示例

摘要

Cis-regulatory DNA encodes the circuitry that enables cell development and differentiation. Cis-regulatory DNA is densely populated by recogntition sequences for transcription factors and the cooperative binding TFs to these sequences determines cell-fate and function by the precise transcriptional regulation of their cognate genes. As such, a mechanistic understanding of gene regulation hinges on our ability to quantify transcription factor occupancy. To map transcription factor occupancy with in the human genome, I took part in the development of digital genomic footprinting -- a technique leveraging the endonuclease DNase I that enables the unbiased and simultaneous detection of transcription factor occupancy genome-wide. We applied digital genomic footprinting to 41 diverse cell- and tissue-types to comprehensively map the human cis-regulatory lexicon. We show that this small genomic compartment contains an expansive repertoire of conserved recognition sequences for DNA-binding proteins and that nuclease patterns within these sequences mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein-DNA interfaces. We also show that both genetic and epigenetic variants affecting chromatin states are concentrated within footprints. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency. These results provide for the first time an exhaustive map of TF occupancy within the human genome.;The architecture of individual cis-regulatory sites is critical for their function. While digital genomic footprinting provides rich information about the occupancy of TFs within individual cis -regulatory elements, it is currently not possible to resolve the genome-wide relationship of transcription factors (TFs) and nucleosomes. To address this deficiency, I developed an extension to digital genomic footprinting that couples the detection of individual TF footprints to nucleosome occupancy. We find that TF occupancy is the major determinant of the positioning of cis-regulatory proximal nucleosomes, and that the positioning and occupancy of promoter-associated nucloeosomes is related to transcriptional start sites selection and output. The approach we describe provides a new view on the structure of cis-regulatory chromatin.;In the second part of this thesis, I used a comparative genomics approach to study the evolution of cis-regulatory DNA and protein occupancy. To do this, I mapped DNase I hypersensitive sites (DHSs) in 45 mouse cell types and primary tissues, and systematically compared these with human DHS maps from orthologous cell and tissue compartments. While I uncovered a small set of core regulatory sequences that encode a developmental program, the vast majority of cis-regulatory DNA is rapidly evolving independently in mouse and human. Overall, I find that the activity of cis-regulatory DNA is directly linked to the the composition of TF recognition sequences within and that the aggregate recognition sequence space for each transcription factor within accessible regulatory DNA of orthologous mouse and human cell types has been strictly conserved. These results demonstrate the remarkable plasticity of the mammalian cis-regulatory program and that TF occupancy is driven by an evolutionary inflexible trans-environment rather than conservation of individual regulatory elements.;Taken together, this thesis provides a framework to understand the organization and evolution of global TF occupancy within the mammalian genome.
机译:顺式调控DNA编码使细胞发育和分化的电路。顺式调控DNA密集地存在着转录因子的识别序列,与这些序列的协同结合TF通过其同源基因的精确转录调控决定了细胞命运和功能。因此,对基因调控的机械理解取决于我们定量转录因子占用的能力。为了绘制人类基因组中转录因子的占用情况,我参与了数字基因组足迹的开发工作-一种利用核酸内切酶DNase I的技术,该技术能够在整个基因组范围内无偏见地同时检测转录因子的占用。我们将数字基因组足迹技术应用于41种不同的细胞和组织类型,以全面绘制人类顺式调控词典。我们表明,这个小的基因组区室包含DNA结合蛋白的保守识别序列的扩展曲目,并且这些序列内的核酸酶模式反映了核苷酸水平的进化保守性,并跟踪了蛋白质-DNA界面的晶体学形貌。我们还表明,影响染色质状态的遗传和表观遗传变异都集中在足迹内。最后,我们描述了一系列在序列和功能上均高度保守的新型调节因子识别基序,并展示了细胞选择性占用模式,该模式与主要调控因子的发育,分化和多能性非常相似。这些结果首次提供了人类基因组中TF占据的详尽图。单个顺式调控位点的结构对其功能至关重要。尽管数字基因组足迹技术提供了有关单个顺式调控元件中TF占据的丰富信息,但目前尚无法解决转录因子(TFs)和核小体的全基因组关系。为了解决这一不足,我开发了对数字基因组足迹的扩展,该扩展将单个TF足迹的检测与核小体的占用耦合在一起。我们发现TF占用率是顺式调节近端核小体定位的主要决定因素,而启动子相关的核小体的定位和占有率与转录起始位点的选择和输出有关。我们所描述的方法为顺式调控染色质的结构提供了新的观点。在本文的第二部分,我使用比较基因组学方法研究了顺式调控染色质的进化和蛋白质的占有。为此,我在45种小鼠细胞类型和主要组织中绘制了DNase I超敏位点(DHS),并系统地将它们与来自直系同源细胞和组织区室的人DHS图进行了比较。虽然我发现了一小部分编码开发程序的核心调控序列,但绝大多数的顺式调控DNA在小鼠和人类中都在迅速独立发展。总的来说,我发现顺式调控DNA的活性与内含TF识别序列的组成直接相关,并且直系同源小鼠和人类细胞类型的可调控DNA内每个转录因子的聚集识别序列空间已被严格保存。 。这些结果证明了哺乳动物的顺式调控程序具有显着的可塑性,并且TF的占据是由进化的僵化的跨环境而不是单个调控元件的保守性驱动的。哺乳动物基因组中的全球TF占有率。

著录项

  • 作者

    Vierstra, Jeffrey David.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Genetics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号