首页> 外文学位 >Exploring Orbital Physics with Angle-Resolved Photoemission Spectroscopy.
【24h】

Exploring Orbital Physics with Angle-Resolved Photoemission Spectroscopy.

机译:用角分辨光发射光谱研究轨道物理学。

获取原文
获取原文并翻译 | 示例

摘要

As an indispensable electronic degree of freedom, the orbital character dominates some of the key energy scales in the solid state --- the electron hopping, Coulomb repulsion, crystal field splitting, and spin-orbit coupling. Recent years have witnessed the birth of a number of exotic phases of matter where orbital physics plays an essential role, e.g. topological insulators, spin-orbital coupled Mott insulators, orbital-ordered transition metal oxides, etc. However, a direct experimental exploration is lacking concerning how the orbital degree of freedom affects the ground state and low energy excitations in these systems.;Angle-resolved photoemission spectroscopy (ARPES) is an invaluable tool for observing the electronic structure, low-energy electron dynamics and in some cases, the orbital wavefunction. Here we perform a case study of (a) the topological insulator and (b) the J1/2 Mott insulator Sr2IrO4 using ARPES.;For the prototype topological insulator Bi2X3 (X=Se, Te), our studies reveal the topological surface state has a spin-orbital coupled wavefunction asymmetric to the Dirac point, and it is possible to manipulate the spin of the photoelectron using polarized photons.;We also discover there are multiple features, including pseudogaps, Fermi "arcs", and marginal-Fermi-liquid-like electronic scattering rates in the effectively hole doped Sr2IrO4, which have been reported in the high-TC cuprates. Due to the relatively simple phase diagram of these doped iridates, we find the aforementioned low energy features are not exclusive to preformed Cooper pairs, or the existence of Quantum Critical Points as suggested in influential theories. Instead, the short-range antiferromagnetic correlation might be vital to the description of the Mott-metal crossover.
机译:作为必不可少的电子自由度,轨道特征支配着固态中的一些关键能级-电子跳跃,库仑排斥,晶体场分裂和自旋轨道耦合。近年来见证了许多奇异的物质阶段的诞生,其中轨道物理学起着至关重要的作用,例如拓扑绝缘体,自旋轨道耦合的Mott绝缘体,有序有序的过渡金属氧化物等。但是,关于这些系统的轨道自由度如何影响基态和低能激发,尚缺乏直接的实验探索。光发射光谱法(ARPES)是观察电子结构,低能电子动力学以及某些情况下观察轨道波函数的宝贵工具。在这里,我们使用ARPES对(a)拓扑绝缘体和(b)J1 / 2 Mott绝缘体Sr2IrO4进行案例研究;对于原型拓扑绝缘体Bi2X3(X = Se,Te),我们的研究表明拓扑表面状态为与狄拉克点不对称的自旋轨道耦合波函数,并且可以使用偏振光子来控制光电子的自旋。在有效空穴掺杂的Sr2IrO4中有类似的电子散射速率,这在高TC铜酸盐中已有报道。由于这些掺杂的铱酸盐的相对简单的相图,我们发现上述低能特征并非是预先形成的库珀对所独有的,也不是影响理论中所建议的量子临界点的存在。相反,短距离反铁磁相关性可能对描述Mott-metal交叉至关重要。

著录项

  • 作者

    Cao, Yue.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Optics.;Materials science.;Condensed matter physics.;Analytical chemistry.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号