首页> 外文学位 >Microstructural design of magnesium alloys for elevated temperature performance
【24h】

Microstructural design of magnesium alloys for elevated temperature performance

机译:镁合金高温性能的显微组织设计

获取原文
获取原文并翻译 | 示例

摘要

Magnesium alloys are promising for automotive and aerospace applications requiring lightweight structural metals due to their high specific strength. Weight reductions through material substitution significantly improve fuel efficiency and reduce greenhouse gas emissions. Challenges to widespread integration of Mg alloys primarily result from their limited ductility and elevated temperature strength.;This research presents a microstructurally-driven systems design approach to Mg alloy development for elevated temperature applications. The alloy properties that were targeted included creep resistance, elevated temperature strength, room temperature ductility, and material cost. To enable microstructural predictions during the design process, computational thermodynamics was utilized with a newly developed atomic mobility database for HCP-Mg. The mobilities for Mg self-diffusion, as well as Al, Ag, Sn, and Zn solute diffusion in HCP-Mg were optimized from available diffusion literature using DICTRA. The optimized mobility database was then validated using experimental diffusion couples.;To limit dislocation creep mechanisms in the first design iteration, a microstructure consisting of Al solutes in solid solution and a fine dispersion of Mg2Sn precipitates was targeted. The development of strength and diffusion models informed by thermodynamic predictions of phase equilibria led to the selection of an optimum Mg-1.9at%Sn-1.5at%Al (TA) alloy for elevated temperature performance. This alloy was cast, solution treated based upon DICTRA homogenization simulations, and then aged. While the tensile and creep properties were competitive with conventional Mg alloys, the TA mechanical performance was ultimately limited because of abnormal grain growth that occurred during solution treatment and the basal Mg2Sn particle morphology.;For the second design iteration, insoluble Mg2Si intermetallic particles were added to the TA alloy to provide enhanced grain boundary pinning during heat treatment and creep deformation. An optimal Mg-1.9at%Sn-1.5at%Al-1.0at%Si (TAS) alloy was cast, solution treated, and aged. The high aspect ratio Mg 2Si particles were found to effectively limit grain growth during solution treatment. Tension testing revealed no statistical difference between the TA and TAS due to the Mg2Si location at the HCPMg grain boundaries. The TAS alloy, however, exhibited approximately an order of magnitude decrease in the minimum creep rate compared to TA because the Mg2Si particles hindered grain boundary motion during deformation.
机译:镁合金因其高比强度而在要求轻质结构金属的汽车和航空航天应用中很有希望。通过材料替代减轻重量,可显着提高燃油效率并减少温室气体排放。镁合金广泛集成所面临的挑战主要是由于其有限的延展性和高温强度。本研究提出了一种微观结构驱动的系统设计方法,以开发用于高温应用的镁合金。目标合金性能包括抗蠕变性,高温强度,室温延展性和材料成本。为了在设计过程中进行微结构预测,将计算热力学与新开发的HCP-Mg原子迁移率数据库一起使用。镁自扩散的迁移率以及HCP-Mg中Al,Ag,Sn和Zn溶质扩散的迁移率是使用DICTRA从现有扩散文献中进行优化的。优化的迁移率数据库然后使用实验扩散对进行验证。为了限制位错蠕变机制,在第一次设计迭代中,针对了由固溶态的Al溶质和Mg2Sn沉淀物的精细分散组成的微观结构。通过对相平衡的热力学预测得出的强度和扩散模型的发展,导致人们选择了用于高温性能的最佳Mg-1.9at%Sn-1.5at%Al(TA)合金。对该合金进行铸造,基于DICTRA均质模拟的固溶处理,然后进行时效处理。虽然拉伸和蠕变性能与常规Mg合金竞争,但由于固溶处理过程中发生的异常晶粒生长和基础Mg2Sn颗粒形态,TA的机械性能最终受到限制;;第二次设计迭代中,添加了不溶性Mg2Si金属间化合物在热处理和蠕变变形过程中,TA合金可以提供增强的晶界钉扎。铸造,固溶处理和时效处理最佳的Mg-1.9at%Sn-1.5at%Al-1.0at%Si(TAS)合金。发现高纵横比的Mg 2Si颗粒有效地限制了固溶处理过程中的晶粒长大。拉伸试验表明,由于HCPMg晶界处的Mg2Si位置,TA和TAS之间没有统计差异。但是,TAS合金的最小蠕变速率比TA降低了大约一个数量级,因为Mg2Si颗粒阻碍了变形过程中的晶界运动。

著录项

  • 作者

    Bryan, Zachary Lee.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号