首页> 外文学位 >Transient stability enhancement of wind farms using power electronics and facts controllers
【24h】

Transient stability enhancement of wind farms using power electronics and facts controllers

机译:使用电力电子设备和事实控制器增强风电场的暂态稳定性

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, it is well-understood that the burning of fossil fuels in electric power station has a significant influence on the global climate due to greenhouse gases. In many countries, the use of cost-effective and reliable low-carbon electricity energy sources is becoming an important energy policy. Among different kinds of clean energy resources- such as solar power, hydro-power, ocean wave power and so on, wind power is the fastest-growing form of renewable energy at the present time.;Moreover, adjustable speed generator wind turbines (ASGWT) has key advantages over the fixed-speed generator wind turbines (FSGWT) in terms of less mechanical stress, improved power quality, high system efficiency, and reduced acoustic noise. One important class of ASGWT is the doubly-fed induction generator (DFIG), which has gained a significant attention of the electric power industry due to their advantages over the other class of ASGWT, i.e. fully rated converter-based wind turbines. Because of increased integration of DFIG-based wind farms into electric power grids, it is necessary to transmit the generated power from wind farms to the existing grids via transmission networks without congestion.;Series capacitive compensation of DFIG-based wind farm is an economical way to increase the power transfer capability of the transmission line connecting wind farm to the grid. For example, a study performed by ABB reveals that increasing the power transfer capability of an existing transmission line from 1300 MW to 2000 MW using series compensation is 90% less than the cost of building a new transmission line.;However, a factor hindering the extensive use of series capacitive compensation is the potential risk of sub- synchronous resonance (SSR). The SSR is a condition where the wind farm exchanges energy with the electric network, to which it is connected, at one or more natural frequencies of the electric or mechanical part of the combined system, comprising the wind farm and the network, and the frequency of the exchanged energy is below the fundamental frequency of the system. This phenomenon may cause severe damage in the wind farm, if not prevented.;Therefore, this dissertation deals with the SSR phenomena in a capacitive series compensated wind farm. A DFIG-based wind farm, which is connected to a series compensated transmission line, is considered as a case study. The small-signal stability analysis of the system is presented, and the eigenvalues of the system are obtained. Using both modal analysis and time-domain simulation, it is shown that the system is potentially unstable due to the SSR mode.;Then, three different possibilities for the addition of SSR damping controller (SSRDC) are investigated. The SSRDC can be added to (1) gate-controlled series capacitor (GCSC), (2) thyristor-controlled series capacitor (TCSC), or (3) DFIG rotor-side converter (RSC) and grid-side converter (GSC) controllers. The first and second cases are related to the series flexible AC transmission systems (FACTS) family, and the third case uses the DFIG back-to-back converters to damp the SSR. The SSRDC is designed using residue-based analysis and root locus diagrams. Using residue-based analysis, the optimal input control signal (ICS) to the SSRDC is identified that can damp the SSR mode without destabilizing other modes, and using root-locus analysis, the required gain for the SSRDC is determined. Moreover, two methods are discussed in order to estimate the optimum input signal to the SSRDC, without measuring it directly. In this dissertation, MATLAB/Simulink is used as a tool for modeling and design of the SSRDC, and PSCAD/EMTDC is used to perform time-domain simulation in order to verify the design process.
机译:如今,众所周知,由于温室气体,发电站中化石燃料的燃烧对全球气候具有重大影响。在许多国家,使用经济高效且可靠的低碳电力能源正在成为一项重要的能源政策。在各种清洁能源中,例如太阳能,水力发电,海浪发电等,风能是目前增长最快的可再生能源形式。此外,变速发电机风力涡轮机(ASGWT)与固定速度发电机风力涡轮机(FSGWT)相比,它具有的主要优势在于机械应力较小,电能质量提高,系统效率高以及噪音减小。 ASGWT的一个重要类别是双馈感应发电机(DFIG),由于其比另一类ASGWT(即完全额定的基于转换器的风力涡轮机)的优势而引起了电力行业的极大关注。由于基于DFIG的风电场越来越多地集成到电网中,因此有必要通过输电网络将风电场的发电功率传输到现有电网而不会出现拥塞。;基于DFIG的风电场的串联电容补偿是一种经济的方式提高将风电场连接到电网的输电线路的电力传输能力。例如,ABB进行的一项研究表明,使用串联补偿将现有输电线路的功率传输能力从1300 MW提高到2000 MW,比建造新输电线路的成本低90%。串联电容补偿的广泛使用是亚同步谐振(SSR)的潜在风险。 SSR是一种条件,其中风电场以包括风电场和网络在内的组合系统的电气或机械部分的一个或多个固有频率与它所连接的电网交换能量。交换能量的百分比低于系统的基本频率。如果不采取措施,这种现象可能会对风电场造成严重损害。因此,本文针对电容串联补偿风电场中的SSR现象进行了研究。作为案例研究,考虑了基于DFIG的风电场,该风电场连接到串联补偿的传输线。给出了系统的小信号稳定性分析,并获得了系统的特征值。使用模态分析和时域仿真,表明系统由于SSR模式而潜在不稳定。然后,研究了添加SSR阻尼控制器(SSRDC)的三种不同可能性。 SSRDC可以添加到(1)栅极控制串联电容器(GCSC),(2)晶闸管控制串联电容器(TCSC)或(3)DFIG转子侧转换器(RSC)和电网侧转换器(GSC)控制器。第一种情况和第二种情况与串联柔性AC传输系统(FACTS)系列有关,第三种情况使用DFIG背对背转换器来衰减SSR。 SSRDC是使用基于残基的分析和根轨迹图设计的。使用基于残基的分析,可以确定到SSRDC的最佳输入控制信号(ICS),该信号可以抑制SSR模式而不会破坏其他模式的稳定性,并使用根轨迹分析确定SSRDC所需的增益。此外,讨论了两种方法,以估计到SSRDC的最佳输入信号,而无需直接对其进行测量。本文以MATLAB / Simulink作为SSRDC建模和设计的工具,并以PSCAD / EMTDC进行时域仿真,以验证设计过程。

著录项

  • 作者

    Mohammadpour, Hossein Ali.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Electrical engineering.;Energy.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号