首页> 外文学位 >Microrheology of soft matter and living cells in equilibrium and non-equilibrium systems.
【24h】

Microrheology of soft matter and living cells in equilibrium and non-equilibrium systems.

机译:平衡和非平衡系统中软物质和活细胞的微流变学。

获取原文
获取原文并翻译 | 示例

摘要

Myosin-generated stresses are responsible for non-equilibrium mechanical behavior of synthesized cytoskeletal networks in vitro. In particular, it is found that myosin stresses can modify the network elasticity. For living cells, it has been suggested that internally generated stress might help cells sense and mimic the stiffness of their environments. However, cellular mechanical responses to intracellular stress are not well understood.;To address these questions, we studied microrheology inside living cells by comparing their mechanical properties to those expected by a statistical analysis of non-thermal fluctuations. We used an experimental method that combines optical tweezers-based active microrheology with particle-tracking passive microrheology. First, we calibrated the trapping force in the linear restoring-force regime with oscillatory optical tweezers. Then, we used optical tweezers to test the response functions against the fluctuation-dissipation theorem in equilibrium systems (i.e., polymer solutions or colloidal crystal gels) and in non-equilibrium systems (i.e., living cells).;In living cells, we employed cellular microrheology using an internal probe as well as an externally attached particle. Whereas extracellular probes attached to the cytoskeleton provide a measure of global cell mechanical properties, intracellular probes provide direct measurements of intracellular mechanical properties. We used an engulfed micro-particle as a probe to study local intracellular stress and stiffness. The relationship between fluctuations in stress and in cell elasticity for living cells under different internal tensions reveals a strong non-linearity between cell elasticity and intracellular stress, which follows a master curve. Our results show that the motors induce an internal tension that forces the network into a non-equilibrium and non-linear state.;These aspects provide a better understanding of the noise in a non-equilibrium system. The relationship between the different sources of noise in living cells helps reveal the inner workings of the highly dynamic cytoskeleton network. Studies of intracellular stress and mechanical properties promote our current understanding of how cells sense and respond to their mechanical environment. Such knowledge could lead to new designs in biomaterials and advance our understanding of diseases related to cellular mechanotransduction. Our studies in active systems contribute to our knowledge of fundamental non-equilibrium statistical physics in biological systems.
机译:肌球蛋白产生的应力负责体外合成的细胞骨架网络的非平衡机械行为。特别地,发现肌球蛋白应力可以改变网络弹性。对于活细胞,已经提出内部产生的压力可能有助于细胞感知并模仿其环境的僵硬。然而,细胞对细胞内应力的机械反应尚不十分清楚。为了解决这些问题,我们通过将活细胞的力学性能与非热波动的统计分析所预期的力学性能进行比较,研究了活细胞内部的微流变学。我们使用了一种结合了基于光镊的主动微流变学和粒子跟踪被动微流变学的实验方法。首先,我们用振荡光镊子在线性恢复力状态下校准捕获力。然后,我们使用光镊测试了平衡系统(即聚合物溶液或胶体晶体凝胶)和非平衡系统(即活细胞)中针对波动耗散定理的响应函数。使用内部探针以及外部附着的颗粒的细胞微流变学。附着在细胞骨架上的细胞外探针提供了整体细胞力学特性的量度,而细胞内探针则提供了细胞内力学特性的直接量度。我们使用吞没的微粒作为探针来研究局部细胞内应力和硬度。在不同的内部张力下,活细胞的应力波动与细胞弹性之间的关系揭示出细胞弹性与细胞内应力之间存在很强的非线性关系,这遵循一条主曲线。我们的结果表明,电动机产生的内部张力会迫使网络进入非平衡和非线性状态。这些方面可以更好地理解非平衡系统中的噪声。活细胞中不同噪声源之间的关系有助于揭示高动态细胞骨架网络的内部工作原理。细胞内应力和机械性能的研究促进了我们目前对细胞如何感知和响应其机械环境的理解。这些知识可能会导致生物材料的新设计,并加深我们对与细胞机械转导有关的疾病的理解。我们对有源系统的研究有助于我们了解生物系统中基本的非平衡统计物理学。

著录项

  • 作者

    Wei, Ming-Tzo.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Biochemistry.;Biomedical engineering.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号