首页> 外文学位 >Roles of Regional Air-sea Interaction and Indo-Pacific Remote Forcing in Summer Rainfall Variability over the South China Sea.
【24h】

Roles of Regional Air-sea Interaction and Indo-Pacific Remote Forcing in Summer Rainfall Variability over the South China Sea.

机译:区域海海相互作用和印度洋-太平洋远程强迫在南中国海夏季降水变化中的作用。

获取原文
获取原文并翻译 | 示例

摘要

As part of the most active components of the global climate system, the South China Sea (SCS) climate has notable impacts on adjacent regions. Understanding the factors and processes of the SCS climate variability is critical for regional climate prediction and climate-related risk management. Based on both observational analysis and numerical experiments, this thesis conducts an innovative investigation of the impacts of both regional air-sea interaction and tropical Indo-Pacific remote forcing on the interannual variability of summer climate in the SCS region.;The regional atmosphere-ocean relationship is analyzed by examming correlation between precipitation and SST tendency, and precipitation and SST variations. Significant seasonality and regionality is identified in the SCS. As for the seasonal air-sea interaction, atmospheric forcing with remarkable cloud-radiation effect, wind-evaporation effect and complimentary effect of wind-driven oceanic processes is found in the transition seasons. Oceanic forcing of atmosphere occurs in early summer and in winter through modulating atmospheric stability and lower-level moisture convergence. As for the interannual atmosphere-ocean interaction, an atmospheric forcing of ocean is dominant in the northern and central SCS from April to July, which is characterized by remarkable cloud-radiation effect, wind-evaporation effect across the central basin, and wind-driven oceanic upwelling effect along the west coast. An oceanic forcing is identified in the northern SCS from November to February during which the SST feedbacks to the precipitation through modulation of the atmospheric stability and the lower-level convergence associated with the large-scale circulation. The 24 selected CMIP5 model simulations capture reasonably the climatological precipitation-SST and precipitation-SST tendency relationships in the SCS, yet their performances in simulation of the interannual air-sea relationship show a wide range of difference. Improvement should be made before the model simulations can be utilized to understand the regional atmosphere-ocean interaction in the SCS.;The interannual variability of summer rainfall over the SCS is correlated with SST anomalies in both the Indian and Pacific Ocean regions. These Indian and Pacific Ocean SST influences are distinguished by extracting three types of cases. In the equatorial central Pacific (ECP) SST forcing case, positive ECP SST anomalies induce anomalous lower-level cyclone over the western North Pacific and northern SCS through a Rossby-wave type response, leading to above-normal precipitation from the equatorial Pacific to the northern SCS. Meanwhile, negative Maritime Continent (MC) SST anomalies work together with positive ECP SST anomalies, and enhance the SCS summer rainfall variability through regional meridional and zonal vertical circulations. In the North Indian Ocean (NIO) SST forcing case, the NIO SST anomalies contribute to the SCS summer rainfall variability by modulating a regional east-west vertical circulation over the NIO through the western North Pacific. These NIO SST anomalies serve as a "medium" for an indirect impact of the preceding winter equatorial eastern Pacific (EEP) SST anomalies on the SCS summer rainfall variability. This delayed (indirect) El Nino-Southern Oscillation (ENSO) influence is distinguished from the simultaneous (direct) ECP SST influence on the SCS summer rainfall. In the co-existing ECP-NIO forcing case, the ECP and NIO SST influences concur, and the occurrence of precipitation anomalies over the SCS is due to a combined effect of both the Pacific and Indian Ocean SST anomalies. The ECP SST impact is dominant after 1990 and the NIO SST influence is relatively more important during 1980s. Moreover, the importance of the Indo-Pacific SST forcing in the SCS summer rainfall variability is supported by the numerical experiments of Community Earth System Model (CESM) with SST forcings specified in the ECP and NIO regions.
机译:作为全球气候系统最活跃的组成部分,南中国海(SCS)气候对邻近地区产生了显着影响。了解南海气候变化的因素和过程对于区域气候预测和与气候相关的风险管理至关重要。本文在观测分析和数值实验的基础上,对区域海-气相互作用和热带印度洋-太平洋偏远强迫对南海夏季气候年际变化的影响进行了创新研究。通过检验降水与海温趋势之间的相关性以及降水与海温变化之间的关系来分析这种关系。 SCS中确定了重要的季节性和区域性。关于季节的海-气相互作用,在过渡季节中发现了具有显着的云辐射效应,风蒸发效应和风驱动海洋过程的互补效应的大气强迫。大气的海洋强迫发生在夏季初冬,这是通过调节大气的稳定性和较低水平的水分汇聚来实现的。关于年际大气与海洋的相互作用,南海北部和中部在4月至7月占主导地位的是海洋,主要表现为云辐射效应,中部盆地的风蒸发效应和风动力。西海岸的海洋上升效应。从11月到2月,在南海北部发现了海洋强迫,在此期间,海温通过调节大气的稳定性和与大尺度环流有关的低层辐合而反馈给降水。选定的24个CMIP5模型模拟合理地捕获了南海气候的降水-SST和降水-SST趋势关系,但是它们在年际海海关系模拟中的表现差异很大。在利用模型模拟来理解南海地区的区域海洋相互作用之前,应该进行改进。;南海夏季降水的年际变化与印度洋和太平洋地区的海温异常有关。这些印度洋和太平洋海表温度的影响可以通过提取三种类型的案例来区分。在赤道中太平洋(ECP)SST强迫情况下,正ECP SST异常通过Rossby波型响应在北太平洋西部和南海北部引起异常的低层气旋,导致从赤道太平洋到太平洋的降水高于正常水平。北南海。同时,负的海洋大陆SST异常与正的ECP SST异常一起工作,并通过区域子午和纬向垂直环流来增强SCS夏季降雨的变化性。在北印度洋(NIO)SST强迫情况下,NIO SST异常通过调节NIO穿过北太平洋西部的区域东西向垂直环流,导致了南海夏季降水的变化。这些NIO SST异常是先前冬季赤道东太平洋(EEP)SST异常对SCS夏季降水变化的间接影响的“媒介”。这种延迟的(间接的)厄尔尼诺-南方涛动(ENSO)影响与同时(直接的)ECP SST对SCS夏季降水的影响不同。在同时存在的ECP-NIO强迫情况下,ECP和NIO SST的影响是一致的,SCS上降水异常的发生是由于太平洋和印度洋SST异常共同作用的结果。 1990年后,ECP SST的影响占主导地位,而NIO SST的影响在1980年代更为重要。此外,印度洋-太平洋SST强迫在SCS夏季降水变化中的重要性得到了ECP和NIO地区规定的SST强迫的社区地球系统模型(CESM)数值试验的支持。

著录项

  • 作者

    He, Zhuoqi.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Meteorology.;Atmospheric sciences.;Physical oceanography.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号