首页> 外文学位 >Digital human modeling for optimal body armor design.
【24h】

Digital human modeling for optimal body armor design.

机译:数字人体建模可优化防弹衣设计。

获取原文
获取原文并翻译 | 示例

摘要

In order to leverage advances made in body-armor materials, as well as to further the design landscape, considering body armor as a complete human-centric system is becoming more prevalent. This trend necessitates a greater focus on human systems integration (HSI) and human-centric design. Digital human models (DHMs) provide a powerful tool for HSI, but modeling-and-simulation tools, let alone DHMs, have rarely been used with body armor. With respect to analysis, this is changing. New methods for evaluating body armor from a biomechanical perspective have been developed within the SantosTM DHM. It is now possible to import digital models of body-armor systems, place them on an avatar, simulate various tasks (i.e., running, aiming, etc.), and then virtually evaluate the armor's effect on performance, balance, mobility, bulk, etc. However, with respect to design, there are no available simulation tools to help users balance the goals of maximizing mobility and survivability concurrently.;In response to these growing needs, there are two new areas of work being proposed and discussed. First, this work leverages a series of new virtual evaluation capabilities for Personal Protective Equipment (PPE) and implements a filter that automatically evaluates and selects from a library of designs the most advantageous PPE system based on user-selected objectives and constraints. Initial tests have shown realistic results with minimal computational demand.;Secondly, this thesis proposes a new method for armor-system topology optimization that optimizes not only biomechanical metrics but also external (to the DHM system) metrics from potentially complex injury and protection models. The design variables for this optimization problem represent the position on the body of small body-armor elements. In addition, the existence of each element is modeled as a variable, such that unnecessary elements are determined and removed automatically. This inclusion of location in combination with the traditional existence variable is a novel inclusion to the topology optimization method. Constraints require that no two elements overlap. The objective functions that govern where the armor elements are moved must be general enough to function with any external data, such as survivability. Thus, a novel process has been developed for importing external data points (i.e., stress at points in the body resulting from a blast simulation) and using regression analysis to represent these points analytically. Then, by using sequential quadratic programming for gradient-based optimization, the armor elements are automatically positioned in order to optimize the objective function (i.e., minimize potential injury). This new approach allows any metric to be used in order to determine general body-armor concepts upstream in the design process. This system has the potential to become especially useful when trying to optimize multiple objectives simultaneously, the results of which are not necessarily intuitive. Thus, given a specified amount of material, one can determine where to place it in order to, for example, maximize mobility, maximize survivability, and maximize balance during a series of specified mission-critical tasks. The intent is not necessarily to provide a final design with one "click"; accurately considering all aspects of hard and soft armor is beyond the scope of this work. However, these methods work towards providing a design aid to help steer system concepts.;Test cases have been successfully run to maximize coverage of specific external data for internal organs (and thus survivability) and mobility, while minimizing weight. The weight metric has also been successfully used as a constraint in the optimal armor design. In summary, this work provides 1) initial steps towards an automated design tool for body armor, 2) a means for integrating different analysis models, and 3) a unique example of human-in-the-loop analysis and optimization.
机译:为了充分利用防弹衣材料的先进性,并扩大设计范围,将防弹衣视为完整的以人为中心的系统变得越来越普遍。这种趋势需要更加关注人机集成(HSI)和以人为本的设计。数字人体模型(DHM)为HSI提供了强大的工具,但是建模和仿真工具(更不用说DHM了)很少与防弹衣一起使用。关于分析,这正在改变。 SantosTM DHM已开发出从生物力学角度评估防弹衣的新方法。现在可以导入人体装甲系统的数字模型,将其放置在虚拟形象上,模拟各种任务(即奔跑,瞄准等),然后虚拟评估装甲对性能,平衡,机动性,体积,但是,在设计方面,没有可用的仿真工具来帮助用户平衡同时实现最大移动性和生存能力的目标。针对这些不断增长的需求,正在提议和讨论两个新的工作领域。首先,这项工作利用了一系列针对个人防护设备(PPE)的新虚拟评估功能,并实现了一个过滤器,该过滤器会根据用户选择的目标和约束条件,自动从设计库中评估和选择最有利的PPE系统。初始测试显示了逼真的结果,而对计算的需求却最小。其次,本文提出了一种用于装甲系统拓扑优化的新方法,该方法不仅可以优化生物力学指标,而且可以从潜在的复杂伤害和保护模型中优化外部(DHM系统)指标。此优化问题的设计变量表示小型防弹衣元素在人体上的位置。此外,将每个元素的存在建模为变量,以便自动确定并删除不必要的元素。位置与传统存在变量的结合是拓扑优化方法的一种新颖融合。约束条件要求没有两个元素重叠。控制装甲元素移动位置的目标函数必须足够通用,才能与任何外部数据(例如生存能力)一起起作用。因此,已经开发出一种新颖的方法来导入外部数据点(即,由爆炸模拟导致的人体点处的压力)并使用回归分析来解析地表示这些点。然后,通过对基于梯度的优化使用顺序二次编程,可自动定位装甲元素,以优化目标函数(即,将潜在伤害降至最低)。这种新方法允许使用任何度量标准来确定设计过程中上游的一般防弹衣概念。当试图同时优化多个目标时,该系统可能会变得特别有用,其结果不一定是直观的。因此,在给定指定数量的材料的情况下,人们可以确定将材料放置在何处,以便例如在一系列指定的关键任务中最大化机动性,最大化生存能力以及最大化平衡。目的并非一定要通过一次“单击”来提供最终设计。准确地考虑软硬装甲的各个方面超出了本研究的范围。但是,这些方法旨在提供设计帮助,以帮助指导系统概念。测试用例已成功运行,可以最大程度地覆盖内部器官(以及生存能力)和活动性的特定外部数据,同时将重量最小化。重量度量也已成功用作最佳装甲设计的约束条件。总而言之,这项工作提供了1)防弹衣自动化设计工具的初步步骤; 2)集成不同分析模型的方法; 3)人体在环分析和优化的独特示例。

著录项

  • 作者

    Capdevila, Nic Andrew.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Engineering Computer.;Computer Science.;Biophysics Biomechanics.;Textile Technology.
  • 学位 M.S.
  • 年度 2014
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号