首页> 外文学位 >Rocking Foundations for Building Systems - Effect of Footing Shape, Soil Environment, Embedment and Normalized Moment-to-Shear Ratio.
【24h】

Rocking Foundations for Building Systems - Effect of Footing Shape, Soil Environment, Embedment and Normalized Moment-to-Shear Ratio.

机译:建筑系统的摇摆基础-立脚形状,土壤环境,嵌入和归一化的矩剪切力比的影响。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation investigates the effect of footing shape, soil type, footing embedment and normalized moment-to-shear ratio on the cyclic performance of shallow footings subjected to rocking. The test results were used to validate modeling parameters and acceptance criteria of rocking shallow foundations in the new ASCE 41-13 standard. The results presented in this study are based on three series of large-scale centrifuge tests and thirty two small-scale centrifuge tests. The large tests included slow cyclic and dynamic shaking loading, but the small centrifuge tests only applied slow cyclic loading to the footings.;Previous centrifuge test results have well characterized the behavior of rectangular rocking footings on sand, but few results are available for clayey ground. Gajan et al. (2005) and Deng et al. (2012) have shown that moment capacity of a rocking footing on sand can be accurately predicted using conventional equations. Tests on clay reported herein verify that the same equations hold for moment capacity of rectangular footings on clayey ground. The results reveal that for similar critical contact area ratio (rhoac) and rotation demand, footings on clay settle about 20 to 40% less than those on sand.;The standard ASCE 41-13 Seismic Evaluation and Retrofit of Existing Buildings includes new provisions for linear and non-linear modeling parameters and acceptance criteria for rocking shallow foundations. The new modeling parameters and acceptance criteria were largely based on model tests on rectangular rocking footings with a limited range of footing length to width ratio (L/B). New model test results are presented, including a systematic variation of L/B and also non-rectangular (H-shaped, C-shaped, and trapezoidal) footings. A tri-linear backbone curve is introduced to model the hysteretic moment-rotation behavior of rectangular and H-Shaped footings. The standard provides equations for rotational stiffness, K50, based on elasticity theory (Gazetas 1991). A simpler empirical method for obtaining the initial stiffness, K50 = 300Mc-foot, is proposed for rectangular footings, where Mc-foot is the moment capacity of the footing. For H-shaped footings, it is found that K50 varies from 400M c-foot to 700Mc-foot.;The new ASCE 41-13 provisions are limited to cases with M/VL > 1, which is considered to be a criteria that will ensure that the footing is rocking dominated (i.e., rocking deformations are more significant than sliding deformations). It is shown in this thesis that footings with 0.71 1, ASCE 41-13 uses the footing rotation as a parameter to determine allowable demand. This parameter cannot be used to predict demand on a footing that has significant sliding deformations. Therefore, a new demand parameter called the total displacement is proposed; the total displacement is defined as dtotal = u + theta·(M/V); u is the sliding measured at the base of the footing, theta is the footing rotation and (M/V) is the height of the loading point.;Rocking of footings with large critical contact area ratio (rho ac) embedded in sand, sometimes results in residual uplift. This residual uplift could be attributed to sand falling into the gap as the footing rocks. The analysis of settlement-rotation data clearly shows a significant influence of footing shape on residual settlement and uplift behavior of the footing. The magnitude of normalized residual uplift is greater for footings with small ratio of width to critical contact length (b/Lc), especially at large amplitudes of rotation. Rectangular footings rocking in the weak direction have better rocking performance than footings rocking on the strong direction. I-shaped footings are found to be more susceptible to settlement (also uplift) than rectangular footings, especially if the "flange" and/or "web" are thin.
机译:本文研究了基岩的形状,土壤类型,基岩埋入和规范的弯矩与剪切比对摇摆的浅基岩土循环性能的影响。测试结果用于验证新的ASCE 41-13标准中的摇摆浅层基础的建模参数和验收标准。本研究提出的结果基于三个系列的大型离心机测试和32个小型离心机测试。大型试验包括缓慢的周期性和动态振动载荷,而小型离心试验仅对基础施加缓慢的循环载荷。以前的离心试验结果已经很好地表征了矩形摇摆基础在沙子上的行为,但对于粘土质地基却很少得到结果。 。 Gajan等。 (2005年)和邓等人。 (2012年)表明,可以使用常规方程式准确预测沙子上摇摆脚的承载力。本文报道的对粘土的测试证明,相同的方程式对粘土地面上矩形基础的弯矩承载力也适用。结果表明,对于相似的临界接触面积比(rhoac)和旋转需求,粘土的基础沉降比沙子上的基础低约20%至40%.; ASCE 41-13标准对现有建筑物的抗震评估和改造包括以下新规定:浅地基的线性和非线性建模参数和验收准则。新的建模参数和验收标准主要基于对矩形摇摆基础的模型测试,该基础基于有限的基础长度和宽度比(L / B)。提出了新的模型测试结果,包括L / B和非矩形(H形,C形和梯形)底脚的系统变化。引入了三线性主干曲线来模拟矩形和H形支脚的滞后力矩-旋转行为。该标准根据弹性理论(Gazetas 1991)提供了旋转刚度方程K50。对于矩形基础,提出了一种用于获得初始刚度的简单方法,即K50 = 300Mc-foot,其中Mc-foot是基础的弯矩能力。对于H形立脚,发现K50从400M c英尺到700Mc英尺不等;新的ASCE 41-13规定仅限于M / VL> 1的情况,这被认为是确保基础以摇摆为主(即,摇摆变形比滑动变形更重要)。结果表明,0.71 1,则基础的剩余沉降与旋转相关,ASCE 41-13使用基础旋转作为确定允许需求的参数。此参数不能用于预测具有明显滑动变形的基础需求。因此,提出了一个新的需求参数,称为总排量。总位移定义为dtotal = u + theta·(M / V); u是在基脚底部测得的滑动量,theta是基脚旋转量,(M / V)是加载点的高度。;有时将大临界接触面积比(rho ac)埋在沙子中的基脚晃动导致残留隆起。这种残余隆起可以归因于沙子作为基岩落入缝隙中。对沉降-旋转数据的分析清楚地表明了基础形状对基础基础的残余沉降和隆起行为的重大影响。对于宽度与临界接触长度之比(b / Lc)小的基脚,归一化残余隆起的幅度更大,尤其是在旋转幅度较大的情况下。沿弱方向摇摆的矩形基础比沿强方向摇摆的基础具有更好的摇摆性能。发现I形底座比矩形底座更易于沉降(也可以抬起),尤其是在“法兰”和/或“腹板”较薄的情况下。

著录项

  • 作者

    Hakhamaneshi, Manouchehr.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Environmental engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 305 p.
  • 总页数 305
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号