首页> 外文学位 >Investigation of condensed and early stage gas phase hypergolic reactions.
【24h】

Investigation of condensed and early stage gas phase hypergolic reactions.

机译:冷凝和早期气相高声反应的研究。

获取原文
获取原文并翻译 | 示例

摘要

Traditional hypergolic propellant combinations, such as those used on the space shuttle orbital maneuvering system first flown in 1981, feature hydrazine based fuels and nitrogen tetroxide (NTO) based oxidizers. Despite the long history of hypergolic propellant implementation, the processes that govern hypergolic ignition are not well understood. In order to achieve ignition, condensed phase fuel and oxidizer must undergo simultaneous physical mixing and chemical reaction. This process generates heat, intermediate condensed phase species, and gas phase species, which then may continue to react and generate more heat until ignition is achieved. The process is not well understood because condensed and gas phase reactions occur rapidly, typically in less than 200 &mgr;s, on much faster timescales than traditional diagnostic methods can observe. A detailed understanding of even the gas phase chemistry is lacking, but is critical for model development.;Initial research has provided confidence that a study of condensed phase hypergolic reactions is useful and possible. Results obtained using an impinging jet apparatus have shown a critical residence time of 0.3 ms is required for the reaction between monomethylhydrazine (MMH) and red fuming nitric acid (RFNA, ~85% HNO3 + 15% N2O4) to achieve conditions favorable for ignition. This critical residence time spans the time required for liquid phase reactions to occur at the fuel/oxidizer interface and can give some insight into the reaction rates for this propellant combination. Experiments performed in a forced mixing constant volume reactor have demonstrated that the chamber pressurization rate for MMH/RFNA can be significantly reduced by diluting the MMH with deionized water. This result indicates that propellant dilution can slow the chemical reaction rates to occur over observable time scales.;The research described in this document consists of two efforts that contribute knowledge to the propulsion community regarding the hypergolic liquid propellant combination of MMH and RFNA or pure nitric acid. The first and most important effort focuses on furthering the understanding of condensed phase reactions between MMH and nitric acid. To accomplish this goal diluted MMH and nitric acid were studied in a Fourier transform infrared spectrometer. By tracking the generation or destruction of specific chemical species in the reacting fluid we can measure the reaction progress as a function of reactant concentration and temperature. This work provides the propulsion community with a quantitative global condensed phase reaction rate equation for MMH/nitric acid. The second effort focuses on improving understanding the recently proposed gas phase hypergolic reaction mechanisms using a streak camera based ultraviolet and visible spectrometer. The time resolution on the streak camera system allows for detailed investigation of the pre-ignition and early stage gas phase species present during the reaction between MMH and RFNA.
机译:传统的高混合气体推进剂组合(例如1981年首次飞行的航天飞机轨道操纵系统上使用的组合)具有肼基燃料和四氧化二氮(NTO)基氧化剂。尽管使用高抛物推进剂已有很长的历史,但控制高抛物点火的过程仍未得到很好的理解。为了实现点火,冷凝相燃料和氧化剂必须同时进行物理混合和化学反应。该过程产生热量,中间的冷凝相物质和气相物质,然后它们可以继续反应并产生更多的热量,直到实现点火。由于冷凝和气相反应发生的时间通常比传统的诊断方法快得多,通常在不到200微秒的时间内就发生了,因此该过程尚未得到很好的理解。甚至对气相化学反应都缺乏详细的了解,但对于模型开发至关重要。初始研究提供了信心,即凝结的超高压反应的研究是有用且可行的。使用撞击式喷射设备获得的结果表明,一甲基肼(MMH)与红色发烟硝酸(RFNA,〜85%HNO3 + 15%N2O4)之间的反应需要0.3 ms的临界停留时间才能达到有利于点火的条件。这个关键的停留时间跨越了在燃料/氧化剂界面发生液相反应所需的时间,并且可以使这种推进剂组合的反应速率有所了解。在强制混合恒定体积反应器中进行的实验表明,通过用去离子水稀释MMH,可以显着降低MMH / RFNA的腔室增压速率。该结果表明推进剂稀释可以减缓在可观察到的时间范围内发生的化学反应速率。;该文件中描述的研究包括两项工作,这些方面为推进界提供了有关MMH和RFNA或高硝酸盐的高酸性液体推进剂组合的知识酸。第一项也是最重要的努力集中在进一步理解MMH和硝酸之间的冷凝相反应上。为了实现该目标,在傅立叶变换红外光谱仪中研究了稀释的MMH和硝酸。通过跟踪反应液中特定化学物质的产生或破坏,我们可以测量反应进程与反应物浓度和温度的关系。这项工作为推进界提供了MMH /硝酸的定量全局凝结反应速率方程。第二项工作着重于使用基于基于紫外和可见光谱仪的条纹相机来提高对最近提出的气相高声反应机理的理解。条纹相机系统上的时间分辨率允许详细研究MMH和RFNA之间反应期间存在的提前点火和早期气相物质。

著录项

  • 作者

    Dennis, Jacob Daniel.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号