首页> 外文学位 >On an expanded framework for personalized cancer treatment: Beyond pharmacogenomics.
【24h】

On an expanded framework for personalized cancer treatment: Beyond pharmacogenomics.

机译:在个性化癌症治疗的扩展框架上:超越药物基因组学。

获取原文
获取原文并翻译 | 示例

摘要

Cancer has been a perennial challenge to clinicians and researchers for more than a century. The existing treatment modalities are "effective" only in the subsets of patient population. The current clinical approach of 'standard-dose-for-all' and subsequent titration through trial-and-error causes severe toxicity in some patients while proving insufficient to others as patients vary genetically as well as phenotypically. The much anticipated pharmacogenomics has been losing its sheen as a sole predictor of clinical outcome. The manifestation of gene (upstream causal variable) to clinical outcome (downstream response variable) proceeds through various stages; several biochemical processes interfere and manipulate the overall outcome. Given the complexity of biological processes and amount of available information, prediction of clinical response for a given treatment through simple deductive reasoning or through pharmacogenomics is infeasible. In order to meet this challenge, we developed a multidisciplinary quantitative approach, empowered by systems theoretic methodology, to serve as a decision-support mechanism for physicians to quantitatively predict the response and adjust dosage for each individual patient.;The first step in treatment planning is the classification of patients into subgroups that are susceptible to extreme responses using biomarkers. To address this, we designed a metabolomics-based approach to study the global metabolic fingerprint in pre-dose samples and characteristic changes due to drug dosing in post-dose samples. The full set of metabolites was correlated to the observed clinical response using data analysis and modeling to identify differentially expressed metabolites in various response groups. The discovered biomarkers, together with our model, aid in identifying patients' risk profiles well in advance, even before commencing their treatment.;Once patients are divided into subgroups, the next crucial step is to predict optimal dosage for individual patients. Several classes of models, including kinetic, pharmacological and population balance models, were developed for the dynamic prediction of drug distribution, reaction and cellular interaction. Unlike physical sciences, the variability in these systems is extremely high (c.v. as high as 100%). Hence, we identified parameters using population approaches such as non-linear mixed effect modeling and Bayesian hierarchical modeling. To circumvent the scarcity of clinical data, we employed a global sensitivity analysis based model-reduction technique and improved the information content by optimal DoE techniques. The identified individual patient model was used to determine optimal dosage through robust model predictive control. To enable the translation of our framework into clinical practice, we developed a one-of-its-kind software, christened nEqualsOne. It shows a great potential to serve as a decision-support tool to enhance the decision-making capabilities of practicing clinicians and improve the survival and quality-of-life among cancer patients. The generic nature of the framework assures a broader impact in other areas of healthcare and beyond, and consequently bears wide socioeconomic implications.
机译:一个多世纪以来,癌症一直是临床医生和研究人员的长期挑战。现有的治疗方式仅在部分患者人群中“有效”。当前的“所有人均标准剂量”的临床方法以及通过反复试验进行滴定的方法在某些患者中引起严重的毒性,但由于患者的遗传和表型差异,对其他患者证明不足。作为临床结果的唯一预测指标,备受期待的药物基因组学一直在失去其光泽。基因(上游因果变量)对临床结果(下游反应变量)的表现经历了各个阶段。几种生化过程会干扰和操纵总体结果。鉴于生物学过程的复杂性和可用信息的量,通过简单的演绎推理或药物基因组学预测给定治疗的临床反应是不可行的。为了应对这一挑战,我们开发了一种多学科的定量方法,并借助系统理论方法,作为医生的决策支持机制,以定量地预测每个患者的反应并调整剂量。治疗计划的第一步是使用生物标记物将患者分为容易受到极端反应影响的亚组。为了解决这个问题,我们设计了一种基于代谢组学的方法来研究给药前样品中的整体代谢指纹图以及给药后样品中由于药物剂量引起的特征变化。使用数据分析和建模以识别各种反应组中差异表达的代谢物,将全套代谢物与观察到的临床反应相关联。发现的生物标记物,连同我们的模型,甚至可以在开始治疗之前就帮助提前识别患者的危险状况。一旦将患者分为亚组,下一步的关键步骤就是预测各个患者的最佳剂量。开发了几类模型,包括动力学,药理学和种群平衡模型,用于动态预测药物分布,反应和细胞相互作用。与物理科学不同,这些系统的变异性极高(c.v.高达100%)。因此,我们使用总体方法(例如非线性混合效应建模和贝叶斯层次建模)来确定参数。为了避免临床数据的稀缺性,我们采用了基于全局敏感性分析的模型简化技术,并通过最佳DoE技术提高了信息含量。所确定的个体患者模型用于通过可靠的模型预测控制确定最佳剂量。为了将我们的框架转换为临床实践,我们开发了一种独一无二的软件,命名为nEqualsOne。它显示出巨大的潜力,可以用作决策支持工具,以增强执业临床医生的决策能力,并改善癌症患者的生存率和生活质量。该框架的通用性确保在医疗保健的其他领域以及其他领域具有更广泛的影响,因此具有广泛的社会经济意义。

著录项

  • 作者

    Devaraj, Jayachandran.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Biomedical.;Engineering System Science.;Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 308 p.
  • 总页数 308
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号