首页> 外文学位 >Thermotectonic evolution of the Alaska Range: Low-temperature thermochronologic constraints.
【24h】

Thermotectonic evolution of the Alaska Range: Low-temperature thermochronologic constraints.

机译:阿拉斯加山脉的热构造演化:低温热年代学限制。

获取原文
获取原文并翻译 | 示例

摘要

The research presented here seeks to constrain the multiple episodes of uplift and denudation contributing to the formation of the Alaska Range. The approach will be to determine the thermal history (~30 Ma to the present) of the central, and eastern Alaska Range both temporally and spatially. Mechanisms of deformation (resulting in periodic episodes of rock uplift) along an intracontinental strike-slip margin may be constrained by investigating and understanding patterns of exhumation through time throughout the central and eastern Alaska Range.;CHAPTER ONE: The goal is to constrain the lower temperature, and hence more recent cooling history of the region, and to determine whether there was variation (episodicity) in the exhumation rate since the Late Miocene, as well as to examine the exhumation record across the DFS. The chapter revisits the same sampling set used in the original Fitzgerald et al., (1995), study applying (U-Th)/He apatite (AHe) thermochronology and HeFTy thermal modeling to evaluate the newer techniques against the old. The general results of the AHe dating and the thermal modeling support the initiation of rapid cooling at ~6 Ma conclusion of the original AFT study.;Another goal of this chapter is to better constrain the timing of onset and rate of exhumation of the northern foothills (i.e., terrain north of the DFS), as well as the central Alaska Range. There is also evidence of an earlier, but less significant, period of cooling at ~10 Ma. Denali Fault proximal cooling age trends suggest northward propagation of deformation that may be accommodated along previously unmapped thrust faults.;CHAPTER TWO: The southern Alaskan continental margin has been tectonically active since at least the Cretaceous (~65 Ma), including ridge subduction (~65--50 Ma), Yakutat microplate translation (beginning ~30--25 Ma), Yakutat collision (~10 Ma-present) with a decrease in subduction angle to flat slab (~beginning at 10 Ma), microplate rotation (Southern Alaska Block) and Pacific plate motion changes relative to the North American plate at ~25--20, 12--10 and 5--6 Ma. Tectonic events along this southern margin resulted in intracontinental deformation and the development of the Alaska Range along the curved right-lateral strike-slip Denali fault system (DFS).;Within the chapter I relate the near synchronicity between the onset of rapid cooling and exhumation in the central and eastern Alaska Range (~6 Ma) along the Denali fault, with plate motion change between the Pacific and North American plates. Plate motion change and an increase in relative convergence at ~6 Ma led to a greater-normal component of collision of the Yakutat microplate at the same time, as its more buoyant southern half of continental affinity entered the southern Alaskan subduction zone. This relationship either initiated or enhanced counterclockwise rotation of the Southern Alaska block (lying north of the plate boundary and south of the DFS) changing the partition of strain along the DFS, as well as causing thrusting along faults that splay off the DFS (e.g., Susitna Glacier thrust fault). All of these tectonic components contribute to the transference of stress from the active subduction zone to the DFS, along which the Alaska Range was formed, and where uplift, exhumation and deformation continues today.;CHAPTER THREE: The aim of this chapter is to constrain multiple periods and patterns of denudation along an intra-continental strike-slip fault system that may then be related to specific tectonic periods of compression accommodated by the northward propagation of basin growth and development (Ruiz et al., 2004; Reiners and Brandon, 2006; Ridgway et al., 2007). The location and subsidence of interior basins located from northwestern Canada to eastern Alaska have been inferred to be controlled by the geometry of the neighboring major convex faults and the state of stress along these faults (i.e. Denali, Tintina and Border Ranges fault systems (Shultz and Aydin, 1990). By evaluating the distribution of locally reduced mean stresses through the use of a boundary element model, the development and subsidence of Tertiary interior basins can be explained by a combination of forces. (Abstract shortened by UMI.).
机译:此处提出的研究旨在限制隆起和剥蚀的多次发作,从而有助于阿拉斯加山脉的形成。该方法将在时间和空间上确定阿拉斯加中部和东部山脉的热史(到现在约30 Ma)。通过研究和了解整个阿拉斯加山脉东部和东部随时间的掘尸方式,可以限制沿大陆内走滑边缘的变形机制(导致岩石隆起的周期性发作)。第一章:目标是限制下层温度,以及该地区最近的降温历史,并确定自中新世以来的发掘速率是否存在变化(各向异性),并检查整个DFS的发掘记录。本章回顾了原始Fitzgerald等人(1995年)中使用的相同采样集,研究应用(U-Th)/ He磷灰石(AHe)热年代学和HeFTy热模型来评估较旧的技术。 AHe测年和热模拟的一般结果支持原始AFT研究结论在约6 Ma处开始快速冷却。;本章的另一个目标是更好地限制北麓山丘的发作时机和尸体发掘速率(即DFS北部的地形)以及阿拉斯加山脉中部。也有证据表明,在〜10 Ma时冷却时间较早,但意义不大。 Denali断层近端冷却年龄趋势表明,变形可能向北传播,这可能沿先前未映射的逆冲断层得以适应。第二章:自至少白垩纪(〜65 Ma)以来,阿拉斯加南部大陆边缘一直具有构造活动性,包括脊俯冲(〜 65--50 Ma),Yakutat微孔板平移(约30--25 Ma开始),Yakutat碰撞(约10 Ma-存在),与平板的俯冲角减小(〜10 Ma开始),微孔板旋转(南在约25--20、12--10和5--6 Ma时,太平洋板块运动相对于北美板块的变化。该南部边缘的构造事件导致了大陆内部的变形,并沿着弯曲的右走向走滑德纳利断裂系统(DFS)发展了阿拉斯加山脉。在本章中,我涉及快速冷却和掘尸的开始之间的近时同步性。沿迪纳利断裂的阿拉斯加中部和东部山脉(约6 Ma),板块运动在太平洋板块和北美板块之间变化。板块运动的变化和〜6 Ma时相对收敛的增加导致雅库塔特微板块同时发生了更大的法向碰撞分量,这是因为它的大陆亲和力更强的南部进入了阿拉斯加南部的俯冲带。这种关系或者引发或增强了阿拉斯加南部地块(位于板块边界以北,位于DFS的南部)的逆时针旋转,从而改变了沿DFS的应变分配,并导致沿从DFS上张开的断层(例如,苏西特纳冰川冲断层)。所有这些构造成分都有助于将应力从活跃的俯冲带转移到DFS,沿着DFS形成阿拉斯加山脉,并一直持续到今天的隆升,发掘和变形的位置。第三章:本章的目的是限制沿陆内走滑断层系统剥蚀的多个时期和模式,可能与盆地生长和发育的北向传播所适应的特定构造压缩时期有关(Ruiz等,2004; Reiners和Brandon,2006) ; Ridgway等,2007)。据推断,从加拿大西北部到阿拉斯加东部的内部盆地的位置和沉陷是由邻近的主要凸断层的几何形状和沿这些断层的应力状态(即Denali,Tintina和Border Ranges断层系统(Shultz和Aydin,1990)。通过使用边界元模型评估局部减小的平均应力的分布,可以用力的组合来解释第三纪内部盆地的发育和沉降(摘要由UMI缩短)。

著录项

  • 作者

    Perry, Stephanie Ellen.;

  • 作者单位

    Syracuse University.;

  • 授予单位 Syracuse University.;
  • 学科 Geology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 843 p.
  • 总页数 843
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号