首页> 外文学位 >Interpreting sensor information in large-scale distributed cyber-physical systems.
【24h】

Interpreting sensor information in large-scale distributed cyber-physical systems.

机译:解释大型分布式网络物理系统中的传感器信息。

获取原文
获取原文并翻译 | 示例

摘要

Devices that sense some aspect of the environment, or collect data about it, process the sensed data to produce useful information, and possibly take actions based on this in- formation to effect desired changes in the environment are becoming ubiquitous. There are numerous examples of such "Cyber-Physical Systems," such as, weather sensors dis- tributed geographically to sense various weather parameters like temperature, air pressure, humidity etc, sensors used at different levels of the energy grid, from power generation to distribution to consumption, that monitor energy production and usage patterns, sen- sors used in various military and civilian surveillance and tracking applications etc. This dissertation focuses on "Distributed Cyber-Physical Systems," the ones that have multiple sensors distributed geographically or spatially. The sensors comprising such Distributed Cyber-Physical Systems may or may not be networked together, although their main pur- pose is to provide localized information to be ultimately fused into an overall picture of the whole geographical space covered by the sensors. This dissertation explores ways of interpreting information in such Distributed Cyber-Physical Systems. In this context, we look at three related problems. The first one is a multiple target localization and tracking problem in a wireless sensor network comprising binary proximity sensors [38]. We analyze this problem using the geometry of sensing of the individual sensors, and apply graph theoretical concepts to develop a fully-distributed multiple, interfering, target localization and tracking algorithm. Our distributed algorithm demonstrates the power of the use of localized information by sensors to make decisions that contribute to the inference about phenomena, in this case target movement, that are essentially global in nature. The distributed implementation of information interpretation also lends efficiency advantages, such as more efficient energy consumption due to reduced communication requirements, as shown in our simulations. The second problem, in sensor information interpretation, that this dissertation looks at is concerned with sensor verification in a system of distributed sensors, all of which are sensing some global phenomena of interest [37]. As a demonstrative application, we use a dataset collected from weather sensors distributed in the U.S. Northeast, each sensor sensing the weather parameters Temperature, Air Pressure, Dew Point, and Visibility, over a time period ranging from late May 2011 to mid-June 2011. Our approach is to first create a statistical model of the weather parameters and then identify outliers in the observed data. These outliers ultimately help verify if the sensors' reports are erroneous. While the first two problems in this dissertation, as described above, deal with sensor information in one domain, target tracking in one case and weather sensing in the other, the third problem we investigate is cross-domain [36]. Here, parameters of one domain affect parameters of another domain, but only the affected domain parameters are measured, and tracked, to ultimately control these parameters in the affected domain. Specifically, we develop methods of network configuration based on distributed estimation and prediction of network performance degradataion parameters, where this performance degradation is originally affected by external environmental parameters such as weather conditions. We take "Routing in Wirelss Mesh Networks in the Face of Adverse Weather Conditions" as an example application to demonstrate our ideas of predictive network configuration. Through the simulations generated using real-world weather data, we are able to show that localized estimation and prediction of wireless link quality, as affected by the extreme weather events, results in remarkable improvements in network routing performance, and performs equally well, or even better, than routing that uses predictions of the affecting weather itself.
机译:能够感知环境某些方面或收集有关数据,处理所感知的数据以产生有用信息,并可能根据此信息采取措施以实现环境中所需变化的设备正变得越来越普遍。此类“网络物理系统”的例子很多,例如地理上分布以感测各种天气参数(例如温度,气压,湿度等)的天气传感器,从发电到发电的不同能量级别的传感器。分布到消耗,以监视能源的生产和使用方式,在各种军事和民用监视和跟踪应用中使用的传感器等。本论文的重点是“分布式网络物理系统”,即具有多个在地理或空间上分布的传感器的系统。组成此类分布式网络物理系统的传感器可能会或可能不会联网在一起,尽管它们的主要目的是提供本地化信息,最终将这些信息融合到传感器所覆盖的整个地理空间的总体图像中。本文探讨了在这种分布式网络物理系统中解释信息的方法。在这种情况下,我们研究三个相关的问题。第一个是包含二进制接近传感器的无线传感器网络中的多目标定位和跟踪问题[38]。我们使用各个传感器的感测几何来分析此问题,并应用图论的概念来开发一种完全分布的多重,干扰,目标定位和跟踪算法。我们的分布式算法演示了传感器利用局部信息进行决策的能力,这些决策有助于对现象(在这种情况下为目标运动)进行推理,而这些现象本质上是全局的。如我们的模拟所示,信息解释的分布式实现还具有效率优势,例如由于减少了通信需求,从而使能源消耗更加有效。本文要研究的第二个问题是传感器信息的解释,它涉及分布式传感器系统中的传感器验证,所有这些传感器都在感知一些全球关注的现象[37]。作为演示应用程序,我们使用从美国东北部分布的天气传感器收集的数据集,每个传感器感测2011年5月下旬至2011年6月中旬的天气参数温度,气压,露点和可见性我们的方法是首先创建天气参数的统计模型,然后在观测数据中识别异常值。这些离群值最终有助于验证传感器的报告是否错误。如上所述,尽管本文的前两个问题在一个域中处理传感器信息,在一种情况下处理目标跟踪,在另一种情况下处理目标跟踪,但我们研究的第三个问题是跨域[36]。此处,一个域的参数会影响另一域的参数,但是只有受影响的域参数会被测量和跟踪,以最终控制受影响的域中的这些参数。具体来说,我们开发基于网络性能降级参数的分布式估计和预测的网络配置方法,其中这种性能下降最初受外部环境参数(例如天气状况)的影响。我们以“面对恶劣天气情况在Wirelss网状网络中路由”为例,演示了我们对预测性网络配置的想法。通过使用实际天气数据生成的模拟,我们能够证明,受极端天气事件的影响,无线链路质量的本地化估计和预测可显着改善网络路由性能,并且性能同样好,甚至比使用预测受影响天气本身的路由更好。

著录项

  • 作者

    Javed, Nauman.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Engineering Computer.;Statistics.;Computer Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号