首页> 外文学位 >Electronic structure of III-V broken gap materials and terminal control in three dimensional nano-scale MOSFETs.
【24h】

Electronic structure of III-V broken gap materials and terminal control in three dimensional nano-scale MOSFETs.

机译:三维纳米级MOSFET中III-V裂隙材料的电子结构和端子控制。

获取原文
获取原文并翻译 | 示例

摘要

In the past few years InAs-Sb/GaSb type-II superlattice have been grown and their performance has been evaluated in great details due to their applications in realization of high performance infrared detectors. They offer number of advantages over other technologies since they possess large effective mass which reduces tunneling, have reduced Auger recombination process, energy gap tunability and uniformity. The performance of detectors based on such superlattices is directly related to the fundamental carrier transport physics. Because of the spatial regularity, electrical properties of these materials are determined by the carrier distribution close to the band edges of the fundamental energy gap and hence accurately calculating the bandstructure is key step in analyzing them. Moreover the absorber region of the detector is thick and simulating it can be computationally expensive. A novel method is presented with which we can model the absorber region as an effective material and reduce significantly the computational cost of modeling the structure.;The progress of the silicon integrated-circuit industry, due to scaling the device dimensions, is well known. However, this down-scaling has made it increasingly difficult to maintain acceptable transistor performance. The electrical characteristics of down-scaled planar transistors are degraded by short-channel effects. The leading solution to the problems of planar transistors is to adopt a three-dimensional structure. A novel computational technique is presented to study the terminal influence inside the three-dimensional (3D) nano-scale MOSFET using TCAD simulations. Within the MOSFET we can take the derivative of the electrostatic potential with respect to voltages at each terminal, and when these derivatives are added together they always sum to unity. We have found that these functions, which we refer to as terminal influence functions or control functions, can be used to quantify the relative influence or control of the terminals anywhere inside the MOSFET, including the channel. The motivation for moving from planar MOSFETs to 3D-MOSFETs is to increase the gate control over the channel. The terminal influence functions quantify the notion of control. To gain insight into the working of a semiconductor device we may visualize different quantities like potential, charge or current density etc. These quantities are available in the standard TCAD tool-kit, but do not directly address the mechanism of terminal control. Terminal influence functions do this very clearly.
机译:在过去的几年中,InAs-Sb / GaSb II型超晶格得到了发展,并且由于其在实现高性能红外探测器中的应用而对其性能进行了详细的评估。与其他技术相比,它们具有许多优势,因为它们具有较大的有效质量,可减少隧道效应,减少俄歇复合过程,能隙可调性和均匀性。基于这种超晶格的探测器的性能直接关系到基本的载流子传输物理学。由于空间规律性,这些材料的电学特性由靠近基本能隙的能带边缘的载流子分布决定,因此准确计算能带结构是分析它们的关键步骤。此外,检测器的吸收器区域较厚,对其进行仿真可能在计算上昂贵。提出了一种新颖的方法,利用该方法可以将吸收区建模为有效材料,并显着降低结构建模的计算成本。众所周知,由于器件尺寸的缩小,硅集成电路产业的进步。但是,这种缩小规模使得维持可接受的晶体管性能变得越来越困难。尺寸缩小的平面晶体管的电特性会因短沟道效应而降低。平面晶体管问题的主要解决方案是采用三维结构。提出了一种新颖的计算技术,以使用TCAD仿真研究三维(3D)纳米级MOSFET内部的终端影响。在MOSFET内,我们可以得出相对于每个端子电压的静电势导数,当这些导数加在一起时,它们总和为1。我们发现,这些功能(我们称为端子影响功能或控制功能)可用于量化MOSFET内部任何地方(包括通道)的端子的相对影响或控制。从平面MOSFET转移到3D MOSFET的动机是增强通道的栅极控制。终端影响函数量化了控制的概念。为了深入了解半导体器件的工作原理,我们可以可视化不同的量,例如电势,电荷或电流密度等。这些量在标准TCAD工具包中可用,但没有直接涉及终端控制的机制。终端影响功能可以非常清楚地做到这一点。

著录项

  • 作者

    Mir, Raja N.;

  • 作者单位

    The University of Texas at Dallas.;

  • 授予单位 The University of Texas at Dallas.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 康复医学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号