首页> 外文学位 >I. Enabling Single-Chain Surfactants to Form Vesicles by Nonamphiphilic Liquid Crystals in Water II. Controlling Attachment and Ligand-Mediated Adherence of Candida albicans on Monolayers.
【24h】

I. Enabling Single-Chain Surfactants to Form Vesicles by Nonamphiphilic Liquid Crystals in Water II. Controlling Attachment and Ligand-Mediated Adherence of Candida albicans on Monolayers.

机译:I.使单链表面活性剂在水中通过非两亲性液晶形成囊泡II。控制白色念珠菌在单分子膜上的附着和配体介导的粘附。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation describes a fundamental study of weak noncovalent interactions and surface forces that exist at the interfaces of various interacting moieties (small molecules or microbes), and its relevance to colloidal and material chemistry.;Chapter 1 presents an emulsion system that enables single-chain anionic or nonionic surfactants to sequester and encapsulate certain water-soluble organic salts, leading to the formation of vesicles in water. The water-soluble organic salt in the system comprises of disodium cromoglycate crystals that are emulsified by surfactants in water to form stable liquid crystal droplets. The work provides an exception to the rule of geometric packing factor that dictates formation of micelles by the surfactants in water.;Chapter 2 shows that the odd or even number of carbon atoms present in the aliphatic chain of surfactants affect the ability of surfactants to emulsify aqueous-based liquid crystals of disodium cromoglycate. Such an odd-even effect is frequently observed for solid state properties like melting point, heat of fusion and refractive index but is rarely observed for molecules present in solution. When mixed in water, anionic single-chain surfactants with odd number of carbon atoms emulsifies disodium cromoglycate to form liquid crystal droplets, while surfactants with even number of carbon atoms fail to emulsify disodium cromoglycate.;Chapter 3 Bolaamphiphiles usually form vesicles only in extreme conditions or in the presence of surfactants. Here, we explore the co-assembly system of synthesized bolaamphiphiles and disodium cromoglycate in water. The combination of the self-assembly forces of the bolaamphiphile and self-associating property of disodium cromoglycate liquid crystals act together at the interface form a unique microemulsion of liquid crystal droplets of disodium cromoglycate embedded in liquid crystal phase.;Chapter 4 describes a key event (adhesion) that precedes infections caused by Candida albicans. Adhesion of C. albicans to a surface is a complex process and is governed by nonspecific attachment or multiple ligand-receptor interactions. The work demonstrates that the multiple ligand-receptor interactions used by C. albicans for adherence to a surface can be individually studied using self-assembled monolayers (SAMs) decorated with minimal motif of the ligands. The SAMs were also used to differentiate between the interactions of the two different morphological forms of C. albicans..;Chapter 5 presents a study on small molecules that were used to inhibit biofilm formed by C. albicans. The acyclic triazoles used in the study were not toxic to the C. albicans and were capable of inhibiting biofilm formed by C. albicans. The acyclic triazole can be used as promising candidates to design new antifungal agents. The chapter also reports the synthesis of squarylated homoserine lactones (SHLs) structural mimics of bacterial acyl homoserine lactones (AHLs) to study the inhibitory effects of SHLs on fungal biofilm. The bacterial AHLs are known to repress the growth of C. albicans and control fungal biofilm in native host environment. The synthesized SHLs were non-toxic to C. albicans and failed to inhibit biofilm formed by C. albicans. .;Chapter 6 uses gradient nanotopography combined with controlled surface chemistry to confine bacterial biofilm formed by Escherichia coli. The E. coli biofilm were confined within micrometer sized regions of hydrophobic SAMs surrounded by polyol-terminated SAMs. The study reveals that surface with higher topography enhances the ability of the bioinert SAMs to resist bacterial adherence to surface.
机译:本文描述了对弱相互作用的弱共价相互作用和表面力的基础研究,该相互作用存在于各种相互作用的部分(小分子或微生物)的界面上,并且与胶体和材料化学有关。第一章介绍了一种乳液体系,该体系可实现单链阴离子或非离子表面活性剂,以螯合和包封某些水溶性有机盐,从而导致在水中形成囊泡。该系统中的水溶性有机盐包含色甘酸二钠晶体,其在水中被表面活性剂乳化形成稳定的液晶小滴。这项工作提供了一个例外,即几何堆积因子决定了表面活性剂在水中形成胶束。第二章表明,表面活性剂脂族链中存在的奇数或偶数碳原子会影响表面活性剂的乳化能力。色甘酸二钠的水基液晶。对于诸如熔点,熔化热和折射率之类的固态特性,经常观察到这种奇偶效应,而对于溶液中存在的分子则很少观察到这种奇偶效应。当与水混合时,具有奇数个碳原子的阴离子单链表面活性剂会乳化色甘酸二钠形成液晶液滴,而具有偶数个碳原子的表面活性剂不能乳化色甘酸二钠。;第3章疏油双亲分子通常仅在极端条件下形成囊泡或在表面活性剂的存在下。在这里,我们探讨了合成的双亲两亲物和色甘酸二钠在水中的共组装系统。丙氨苯甲酸酯的自组装力和色甘氨酸二钠液晶的自缔合特性的共同作用在界面处共同形成了嵌入液晶相的色甘酸二钠液晶微滴的独特微乳液。第4章描述了一个关键事件(粘附)在白色念珠菌引起的感染之前发生。白色念珠菌对表面的粘附是一个复杂的过程,并受非特异性附着或多种配体-受体相互作用的控制。这项工作表明,白色念珠菌用于粘附在表面上的多种配体-受体相互作用可以使用装饰有最小配体基序的自组装单分子膜(SAMs)进行单独研究。 SAM还用于区分白色念珠菌的两种不同形态形式之间的相互作用。第五章介绍了用于抑制白色念珠菌形成的生物膜的小分子的研究。研究中使用的无环三唑对白色念珠菌无毒,并能够抑制白色念珠菌形成的生物膜。无环三唑可用作设计新的抗真菌剂的有前途的候选者。本章还报告了细菌酰基高丝氨酸内酯(AHLs)的方形化高丝氨酸内酯(SHLs)结构模拟物的合成,以研究SHLs对真菌生物膜的抑制作用。已知细菌AHL可抑制原生宿主环境中白色念珠菌的生长并控制真菌生物膜。合成的SHL对白色念珠菌无毒,并且不能抑制白色念珠菌形成的生物膜。第6章使用梯度纳米形貌与受控表面化学相结合,限制了由大肠杆菌形成的细菌生物膜。大肠杆菌生物膜被限制在被多元醇封端的SAM包围的疏水SAM的微米尺寸区域内。该研究表明,具有较高形貌的表面可增强生物惰性SAM抵抗细菌粘附于表面的能力。

著录项

  • 作者

    Varghese, Nisha.;

  • 作者单位

    Syracuse University.;

  • 授予单位 Syracuse University.;
  • 学科 Chemistry Physical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 261 p.
  • 总页数 261
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号