首页> 外文学位 >Structure, slow dynamics, kinetic arrest, and massively reconfigurable assembly in colloidal suspensions.
【24h】

Structure, slow dynamics, kinetic arrest, and massively reconfigurable assembly in colloidal suspensions.

机译:胶体悬浮液的结构,缓慢的动力学,动力学停滞和大规模可重构的组装。

获取原文
获取原文并翻译 | 示例

摘要

Colloidal suspensions offer the level of control necessary to assemble and form novel equilibrium, and non-equilibrium states. The realm of colloidal suspensions is vast and ripe with opportunities for synthesizing new materials possessing superlative physical characteristics. In this thesis we focus on colloidal liquids and the diverse non-equilibrium soft solids they can form, and how quenched disorder can be used to drive equilibrium assembly. These fundamental science topics are highly relevant for materials science and engineering applications.;Chapters 2 through 5 focus predominantly on slow dynamics, kinetic arrest and nonequilibrium soft solid properties and their unique applications. In Chapter 2 we explore the subtle interplay between colloidal liquid-gas macrophase separation, percolation, kinetic arrest, and space spanning gelation of short ranged attractive spherical and non-spherical colloids. We address the recent claim that space spanning gelation is solely a product of spinodal decomposition. Our key finding is that the kinetic gel line does not scale with either interactions or particle shape in the same manner as the spinodal and percolation boundaries suggesting highly non-universal behavior. In Chapter 3 we develop and apply a statistical dynamical theory for dense isotropic sphere-rod mixtures as a function of attraction strength, aspect ratio, and composition. Up to seven transiently localized phases are predicted and dynamical complexity increases with rod aspect ratio. The elastic shear modulus and absolute yield stress are predicted to undergo order of magnitude variation upon crossing non-equilibrium phase boundaries. In Chapters 4 and 5 we develop a new, non-replica based approach to treat the thermodynamics and structure of hard sphere glasses in 3 dimensions and greater. Novel predictions emerge for the glass transition and jamming densities and excellent agreement with recent simulations in elevated dimensions (above 3) is presented. In three dimensions we also explicitly probe the glass pair structure upon approach to jamming. Multiple distinctive features of jamming are recovered and the results are compared to recent replica theory approaches. With our advanced 3D hard sphere structure, we quantitatively test the Non-linear Langevin equation (NLE) theory of activated dynamics in the ultra-dense regime. At low to moderate density, relaxation times are in agreement with simulation and experiment. In the highly over-compressed regime though, NLE theory appears to miss some longer ranged correlations required to correctly capture the relaxation time growth. Calculations of the linear elastic shear modulus and absolute yield stress for nearly jammed packings are in good agreement with recent experiments on colloidal suspensions.;Chapters 6 and 7 focus exclusively on equilibrium fluid structure. In particular, we explore the possibility of using of a quench disordered large mesh gel composed of long rigid rod polymers, to provide a tool to mediate the structure and thermodynamics of colloidal suspensions. We employ the Replicated Reference Interaction Site Model approach to study a model quenched fiber gel immersed in a spherical colloid fluid. The theory predicts a sharp wetting-like transition with increasing colloid-fiber attractions accompanied by strong thermodynamic and colloid packing changes. By increasing the colloid-colloid attractions at constant colloid-fiber interactions, a surprising state of maximum adsorption is predicted. This phenomenon suggests a strategy for avoiding macrophase separation and achieving a new state characterized by large, but controlled, density fluctuations. The possibility of exploiting these phenomena to create assemblies that can be reversibly switched between electrically conductive and insulating states is explored.
机译:胶体悬浮液提供了组装和形成新的平衡态和非平衡态所必需的控制水平。胶体悬浮液领域广阔且成熟,有机会合成具有最高级物理特性的新材料。在本文中,我们着重于胶体液体和它们可能形成的各种非平衡软固体,以及如何利用淬灭性无序来驱动平衡组装。这些基础科学主题与材料科学和工程应用高度相关。;第2章至第5章主要关注慢动力学,动力学停滞和非平衡软固体特性及其独特应用。在第2章中,我们探讨了短程吸引球形和非球形胶体的气态胶体气态宏观分离,渗流,动力学停滞和空间跨度凝胶化之间的微妙相互作用。我们解决了最近的说法,即跨空间凝胶化只是旋节线分解的产物。我们的主要发现是,动力学凝胶线不会以与旋节线和渗流边界相同的方式随相互作用或颗粒形状缩放,这表明高度的非普遍行为。在第3章中,我们开发并应用了统计动力学理论,用于研究高密度各向同性球杆混合物的吸力,纵横比和组成。可以预测多达七个瞬态局部相,并且随着杆纵横比的增加,动力学复杂性也会增加。弹性剪切模量和绝对屈服应力预计会在跨越非平衡相边界时发生数量级变化。在第4章和第5章中,我们开发了一种基于非副本的新方法来处理3维及更大尺寸的硬球玻璃的热力学和结构。出现了有关玻璃化转变和堵塞密度的新颖预测,并提出了与最近的高尺寸模拟(3以上)的一致性。在三个维度上,我们还明确地探查了玻璃对结构的接近程度。恢复了干扰的多个独特特征,并将结果与​​最新的复制理论方法进行了比较。利用我们先进的3D硬球结构,我们可以定量地测试超致密状态下激活动力学的非线性Langevin方程(NLE)理论。在中低密度下,弛豫时间与模拟和实验一致。但是,在高度过度压缩的情况下,NLE理论似乎错过了一些更长距离的相关性,以正确捕获松弛时间的增长。几乎堵塞的填料的线性弹性剪切模量和绝对屈服应力的计算与最近对胶体悬浮液的实验吻合良好。第6章和第7章仅关注平衡流体结构。特别地,我们探索了使用由长的刚性棒状聚合物组成的无序淬灭的大网状凝胶的可能性,以提供介导胶体悬浮液的结构和热力学的工具。我们采用复制参考相互作用位点模型方法研究浸入球形胶体流体中的模型淬火纤维凝胶。该理论预测,随着胶体纤维吸引力的增加,伴随着强烈的热力学和胶体堆积变化,将出现类似湿润的急剧转变。通过以恒定的胶体-纤维相互作用增加胶体-胶体吸引力,可以预测出最大吸附的令人惊讶的状态。这种现象表明了一种避免宏观相分离并达到以较大但可控制的密度波动为特征的新状态的策略。探索了利用这些现象来创建可在导电状态和绝缘状态之间可逆切换的组件的可能性。

著录项

  • 作者

    Jadrich, Ryan Bradley.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Condensed matter physics.;Physical chemistry.;Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 328 p.
  • 总页数 328
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号