首页> 外文学位 >Development of the Single-Relaxation-Time Lattice Boltzmann Method for Application to Thermal Fluid Flows.
【24h】

Development of the Single-Relaxation-Time Lattice Boltzmann Method for Application to Thermal Fluid Flows.

机译:单弛豫时间格子玻尔兹曼方法的发展用于热流体流。

获取原文
获取原文并翻译 | 示例

摘要

This work investigates the single-relaxation-time Lattice Boltzmann Method and how to develop it into a full hydrodynamic and thermal modeling scheme. First the single- relaxation time isothermal Lattice Boltzmann Method is outlined, beginning with the fundamentals of the lattice model and then proceeding through the necessary governing equations for the two-dimensional, nine-directional lattice. The governing equations are then presented in a discretized form to be used for simulation, followed by treatment of boundary conditions. Fluid and dimensional properties are explained in terms of both lattice units and physical units via conversion factors. Next is an introduction to thermal Lattice Boltzmann, discussing the changes as well as going through new governing equations pertaining to the internal energy density distribution function. Then the thermal scheme is shown in discretized form along with thermal boundary conditions and updated hydrodynamic boundary conditions. Fluid properties are reviewed alongside thermal properties, as they are essential to know when designing a simulation. Finally, results are shown for some two-dimensional channel flow geometries with hot and cold surfaces: a uniform-width channel, a channel that undergoes sudden expansion, and a channel featuring sudden contraction. The flow within the channel could be dominated by the density stratification or the forced flow introduced at the inlet. These mixed flows of natural and forced convection are characterized by the Reynolds and Rayleigh numbers, the Rayleigh numbers above critical value to allow for formation of natural convection 2 cells when experiencing low-Reynolds flows. The results are presented as contour plots of temperature and stream function.
机译:这项工作研究了单松弛时间格子Boltzmann方法,以及如何将其发展为完整的流体动力学和热力模拟方案。首先概述了单弛豫时间等温格子Boltzmann方法,从晶格模型的基本原理开始,然后进行二维,九向晶格的必要控制方程。然后,将控制方程式以离散形式呈现,以用于仿真,然后处理边界条件。流体和尺寸特性是通过转换因子以晶格单位和物理单位来解释的。接下来是热格子Boltzmann的简介,讨论了这些变化以及通过了与内部能量密度分布函数有关的新控制方程。然后以离散形式显示热方案以及热边界条件和更新的水动力边界条件。流体特性与热特性一并进行了审查,因为在设计仿真时必须了解它们。最后,显示了具有热表面和冷表面的某些二维通道流的几何形状的结果:均匀宽度的通道,经历突然膨胀的通道和具有突然收缩的通道。通道内的流量可以由密度分层或进口处引入的强制流量控制。这些自然对流和强制对流混合流的特征在于雷诺数和瑞利数,瑞利数高于临界值,以便在经历低雷诺数流时能够形成自然对流2细胞。结果显示为温度和流函数的等高线图。

著录项

  • 作者

    Scott, Gregory.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2014
  • 页码 55 p.
  • 总页数 55
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号