首页> 外文学位 >Transport Performance Projection of Emerging Nanoscale Devices.
【24h】

Transport Performance Projection of Emerging Nanoscale Devices.

机译:新兴纳米器件的传输性能预测。

获取原文
获取原文并翻译 | 示例

摘要

Emerging devices, such as those based on carbon (in the form of graphene or nanotubes) or III-V compound semiconductors, are constructed on an atomic scale, where the transport is governed by the Schrodinger equation of quantum mechanics or the Boltzmann transport equation (BTE) of semi-classical mechanics.;In the first stage of work, we use the NEGF approach to show how quantum-mechanical transport impacts the cutoff frequencies of III-V HEMTs as the gate length is shrunk. We demonstrate that the cutoff frequencies tend to saturate as the gate length is scaled down, i.e., that they attain a maximum value that ceases to improve with further scaling, and we tie this behavior to the low effective mass of electrons in III-V materials, which is a transport property.;In the second stage of work, we examine the impact of electron scattering on the performance of CNFETs via the BTE. We show that the collisions of electrons with substrate phonons (arising from lattice vibrations within the substrate on which the CNFET resides) is critical to their performance, and we thereby identify the best and worst choices of substrate for optimum performance.;For future work, we propose the creation of a tool that captures the transport of electrons in quantum-dot solar cells. The tool would utilize NEGF to account for quantum-mechanical transport in the presence of light, and its aim would be to facilitate the systematic understanding of cell operation and hence optimal cell design.;The solutions of the Schrodinger equation and the BTE offer an opportunity not only to explore and understand the rich physics of small-scale devices, but also to predict their performance potential. The Schrodinger equation can generally be tackled by the method of nonequilibrium Green's functions (NEGF), and the BTE can be solved with the aid of commercial numerical software, such as COMSOL. In this doctoral work, we utilize these state-of-the-art transport approaches to study the performance of emerging nanoscale transistors, namely, III-V high-electron-mobility transistors (HEMTs) and carbon-nanotube transistors (CNFETs).
机译:诸如基于碳(以石墨烯或纳米管的形式)或III-V化合物半导体的那些新兴器件是在原子尺度上构建的,其传输受量子力学的Schrodinger方程或Boltzmann传输方程(在工作的第一阶段,我们使用NEGF方法展示了随着门长度的缩短,量子力学输运如何影响III-V HEMT的截止频率。我们证明,随着栅极长度的减小,截止频率趋于饱和,即,截止频率达到最大值,并随着进一步的缩放而停止提高,并且我们将此行为与III-V材料中电子的低有效质量相关联在第二阶段的工作中,我们研究了电子散射通过BTE对CNFET的性能的影响。我们证明了电子与基板声子的碰撞(由CNFET所在的基板内部的晶格振动引起)对它们的性能至关重要,因此我们确定了最佳性能的最佳和最差基板选择;对于以后的工作,我们建议创建一种工具来捕获量子点太阳能电池中电子的传输。该工具将利用NEGF来解释存在光时的量子力学传输,其目的是促进对电池操作的系统理解,从而优化电池设计。;薛定inger方程和BTE的解决方案提供了机会不仅要探索和了解小型设备的丰富物理原理,而且要预测其性能潜力。 Schrodinger方程通常可以通过非平衡格林函数(NEGF)的方法求解,而BTE可以借助商业数值软件(例如COMSOL)求解。在这项博士论文中,我们利用这些最先进的传输方法来研究新兴的纳米级晶体管的性能,即III-V型高电子迁移率晶体管(HEMT)和碳纳米管晶体管(CNFET)。

著录项

  • 作者

    Ahmed, Sabbir.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Electrical engineering.;Computer science.;Theoretical physics.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 老年病学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号