首页> 外文学位 >Quantum control of molecular fragmentation in strong laser fields.
【24h】

Quantum control of molecular fragmentation in strong laser fields.

机译:强激光场中分子破碎的量子控制。

获取原文
获取原文并翻译 | 示例

摘要

Present advances in laser technology allow the production of ultrashort (<∼5 fs, approaching single cycle at 800 nm), intense tabletop laser pulses. At these high intensities laser-matter interactions cannot be described with perturbation theory since multiphoton processes are involved. This is in contrast to photodissociation by the absorption of a single photon, which is well described by perturbation theory. For example, at high intensities (<∼5x1013 W/cm2) the fragmentation of molecular hydrogen ions has been observed via the absorption of three or more photons. In another example, an intriguing dissociation mechanism has been observed where molecular hydrogen ions seem to fragment by apparently absorbing no photons. This is actually a two photon process, photoabsorption followed by stimulated emission, resulting in low energy fragments. We are interested in exploring these kinds of multiphoton processes.;Our research group has studied the dynamics and control of fragmentation induced by strong laser fields in a variety of molecular targets. The main goal is to provide a basic understanding of fragmentation mechanisms and possible control schemes of benchmark systems such as H2+. This knowledge is further extended to more complex systems like the benchmark H3+ polyatomic and other molecules. In this dissertation, we report research based on two types of experiments. In the first part, we describe laser-induced fragmentation of molecular ion-beam targets. In the latter part, we discuss the formation of highly-excited neutral fragments from hydrogen molecules using ultrashort laser pulses. In carrying out these experiments, we have also extended experimental techniques beyond their previous capabilities.;We have performed a few experiments to advance our understanding of laser-induced fragmentation of molecular-ion beams. For instance, we explored vibrationally resolved spectra of O2+ dissociation using various wavelengths. We observed a vibrational suppression effect in the dissociation spectra due to the small magnitude of the dipole transition moment, which depends on the photon energy --- a phenomenon known as Cooper minima. By changing the laser wavelength, the Cooper minima shift, a fact that was used to identify the dissociation pathways. In another project, we studied the carrier-envelope phase (CEP) dependences of highly-excited fragments from hydrogen molecules. General CEP theory predicts a CEP dependence in the total dissociation yield due to the interference of dissociation pathways differing by an even net number of photons, and our measurements are consistent with this prediction. Moreover, we were able to extract the difference in the net number of photons involved in the interfering pathways by using a Fourier analysis. In terms of our experimental method, we have implemented a pump-probe style technique on a thin molecular ion-beam target and explored the feasibility of such experiments. The results presented in this work should lead to a better understanding of the dynamics and control in molecular fragmentation induced by intense laser fields.
机译:激光技术的最新进展允许产生超短(<〜5 fs,在800 nm处接近单周期),强台式激光脉冲。在这些高强度下,由于涉及多光子过程,因此无法用微扰理论描述激光物质的相互作用。这与通过吸收单个光子的光解离相反,后者通过扰动理论得到了很好的描述。例如,在高强度(<〜5x1013 W / cm2)下,通过吸收三个或更多个光子,观察到分子氢离子的碎裂。在另一个例子中,已经观察到了令人着迷的解离机理,其中分子氢离子似乎通过显然不吸收光子而碎裂。这实际上是两个光子过程,先是光吸收,然后是受激发射,从而产生低能碎片。我们对探索这类多光子过程感兴趣。;我们的研究组研究了在各种分子靶标中强激光场诱导的断裂的动力学和控制。主要目标是提供对碎裂机制和基准系统(例如H2 +)的可能控制方案的基本了解。该知识进一步扩展到更复杂的系统,例如基准H3 +多原子分子和其他分子。在本文中,我们报告了基于两种类型的实验研究。在第一部分中,我们描述了激光诱导的分子离子束靶的断裂。在后一部分中,我们讨论使用超短激光脉冲从氢分子形成高激发的中性片段。在进行这些实验时,我们还扩展了实验技术,使其超出了以前的功能。我们已经进行了一些实验,以加深对激光诱导的分子离子束破碎的理解。例如,我们探索了使用各种波长的O2 +离解的振动分辨光谱。由于偶极跃迁的幅度很小,我们在离解谱中观察到了振动抑制效应,这取决于光子能量-这种现象称为库珀极小值。通过改变激光波长,库珀极小值发生了偏移,这是用来识别解离途径的事实。在另一个项目中,我们研究了来自氢分子的高激发片段的载流子包裹相(CEP)依赖性。通用CEP理论预测,由于解离途径的干扰相差偶数净光子数,因此总解离产量中存在CEP依赖性,我们的测量与该预测一致。此外,我们能够通过使用傅立叶分析来提取干扰路径中涉及的光子净数量的差异。根据我们的实验方法,我们已经在薄分子离子束靶上实现了泵浦探针式技术,并探索了这种实验的可行性。这项工作中提出的结果应该导致人们更好地理解由强激光场引起的分子碎裂的动力学和控制。

著录项

  • 作者

    Zohrabi, Mohammad.;

  • 作者单位

    Kansas State University.;

  • 授予单位 Kansas State University.;
  • 学科 Molecular physics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号