首页> 外文学位 >Submicron-resolution photoacoustic microscopy of endogenous light-absorbing biomolecules.
【24h】

Submicron-resolution photoacoustic microscopy of endogenous light-absorbing biomolecules.

机译:内源性光吸收生物分子的亚微米分辨率光声显微镜。

获取原文
获取原文并翻译 | 示例

摘要

Photoacoustic imaging in biomedicine has the unique advantage of probing endogenous light absorbers at various length scales with a 100% relative sensitivity. Among the several modalities of photoacoustic imaging, optical-resolution photoacoustic microscopy (OR-PAM) can achieve high spatial resolution, on the order of optical wavelength, at <1 mm depth in biological tissue (the optical ballistic regime). OR-PAM has been applied successfully to structural and functional imaging of blood vasculature and red blood cells in vivo. Any molecules which absorb sufficient light at certain wavelengths can potentially be imaged by PAM. Compared with pure optical imaging, which typically targets fluorescent markers, label-free PAM avoids the major concerns that the fluorescent labeling probes may disturb the function of biomolecules and may have an insufficient density. This dissertation aims to advance label-free OR-PAM to the subcellular scale. The first part of this dissertation describes the technological advancement of PAM yielding high spatial resolution in 3D. The lateral resolution was improved by using optical objectives with high numerical apertures for optical focusing. The axial resolution was improved by using broadband ultrasonic transducers for ultrasound detection. We achieved 220 nm lateral resolution in transmission mode, 0.43 microm lateral resolution in reflection mode, 7.6 microm axial resolution in normal tissue, and 5.8 microm axial resolution with silicone oil immersion/injection. The achieved lateral resolution and axial resolution were the finest reported at the time. With high-resolution in 3D, PAM was demonstrated to resolve cellular and subcellular structures in vivo, such as red blood cells and melanosomes in melanoma cells. Compared with previous PAM systems, our high-resolution PAM could resolve capillaries in mouse ears more clearly. As an example application, we demonstrated intracellular temperature imaging, assisted by fluorescence signal detection, with sub-degree temperature resolution and sub-micron lateral resolution. The second part of this dissertation describes the exploration of endogenous light-absorbing biomolecules for PAM. We demonstrated cytochromes and myoglobin as new absorption contrasts for PAM and identified the corresponding optimal wavelengths for imaging. Fixed fibroblasts on slides and mouse ear sections were imaged by PAM at 422 nm and 250 nm wavelengths to reveal cytoplasms and nuclei, respectively, as confirmed by standard hematoxylin and eosin (H&E) histology. By imaging a blood-perfused mouse heart at 532 nm down to 150 microm in depth, we derived the myocardial sheet thickness and the cleavage height from an undehydrated heart for the first time. The findings promote PAM at new wavelengths and open up new possibilities for characterizing biological tissue. Of particular interest, dual-wavelength PAM around 250 nm and 420 nm wavelengths is analogous to H&E histology. The last part of this dissertation describes the development of sectioning photoacoustic microscopy (SPAM), based on the advancement in spatial resolution and new contrasts for PAM, with applications in brain histology. Label-free SPAM, assisted by a microtome, acquires serial distortion-free images of a specimen on the surface. By exciting cell nuclei at 266 nm wavelength with high resolution, SPAM could pinpoint cell nuclei sensitively and specifically in the mouse brain section, as confirmed by H&E histology. SPAM was demonstrated to generate high-resolution 3D images, highlighting cell nuclei, of formalin-fixed paraffin-embedded mouse brains without tissue staining or clearing. SPAM can potentially serve as a high-throughput and minimal-artifact substitute for histology, probe many other biomolecules and cells, and become a universal tool for animal or human whole-organ microscopy, with diverse applications in life sciences.
机译:生物医学中的光声成像具有以100%的相对灵敏度探测各种长度的内源性光吸收剂的独特优势。在光声成像的几种模式中,光学分辨率光声显微镜(OR-PAM)可以在生物组织中小于1 mm的深度(光学弹道制度)上达到光学波长量级的高空间分辨率。 OR-PAM已成功应用于体内血管和红细胞的结构和功能成像。 PAM可以使在某些波长下吸收足够光的任何分子成像。与通常以荧光标记物为目标的纯光学成像相比,无标记的PAM避免了主要的担忧,即荧光标记探针可能会干扰生物分子的功能并且密度可能不足。本文旨在将无标记的OR-PAM提高到亚细胞水平。本文的第一部分描述了PAM技术在3D领域中的高空间分辨率。通过使用具有高数值孔径的光学物镜进行光学聚焦,可以提高横向分辨率。通过使用宽带超声换能器进行超声检测,改善了轴向分辨率。通过硅油浸入/注入,我们在透射模式下实现了220 nm的横向分辨率,在反射模式下实现了0.43 microm的横向分辨率,在正常组织中实现了7.6 microm的轴向分辨率,以及5.8 microm的轴向分辨率。当时获得的横向分辨率和轴向分辨率最高。 PAM具有3D高分辨率,可在体内解析细胞和亚细胞结构,例如黑素瘤细胞中的红细胞和黑素体。与以前的PAM系统相比,我们的高分辨率PAM可以更清晰地分辨鼠标耳朵中的毛细血管。作为示例应用程序,我们展示了细胞内温度成像,辅以荧光信号检测,具有亚度温度分辨率和亚微米横向分辨率。本文的第二部分描述了用于PAM的内源性光吸收生物分子的探索。我们展示了细胞色素和肌红蛋白作为PAM的新吸收对比,并确定了相应的成像最佳波长。经标准苏木精和曙红(H&E)组织学确认,通过PAM在玻片和小鼠耳朵切片上固定的成纤维细胞在422 nm和250 nm波长下成像,以分别揭示细胞质和细胞核。通过对深度为150微米深的532 nm的血液灌注的小鼠心脏进行成像,我们首次获得了来自未脱水心脏的心肌片厚度和卵裂高度。这些发现促进了PAM在新波长下的出现,并为表征生物组织开辟了新的可能性。特别令人感兴趣的是,大约250 nm和420 nm波长的双波长PAM与H&E组织学类似。本论文的最后一部分基于空间分辨率的发展和PAM的新对比,介绍了切片光声显微镜(SPAM)的发展及其在脑组织学中的应用。借助切片机,无标签的SPAM可以获取表面上样品的连续无畸变图像。 H&E组织学证实,SPAM通过以高分辨率激发266 nm波长的细胞核,可以灵敏地(特别是在小鼠脑部)查明细胞核。事实证明,SPAM可以生成福尔马林固定石蜡包埋的小鼠大脑的高分辨率3D图像,突出显示细胞核,而无需组织染色或清除。 SPAM可以潜在地充当组织学的高通量和极少伪像的替代物,探测许多其他生物分子和细胞,并成为动物或人类全器官显微术的通用工具,在生命科学中具有多种应用。

著录项

  • 作者

    Zhang, Chi.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Engineering Biomedical.;Physics Optics.;Health Sciences Radiology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号