首页> 外文学位 >Computational insights into the Oxygen Evolving Complex of Photosystem II.
【24h】

Computational insights into the Oxygen Evolving Complex of Photosystem II.

机译:对光系统II析氧复合物的计算见解。

获取原文
获取原文并翻译 | 示例

摘要

The Oxygen Evolving Complex (OEC) of Photosystem II (PSII) is a unique Mn4O5Ca2+ cluster that catalyzes the photoactivated water splitting reaction. The OEC is a model system for bio-inspired artificial systems to use solar energy to pull electrons from water to produce fuel. The OEC goes through a cycle of 5 S states storing 4 holes, via electron transfer to P680+ , the primary electron donor in PSII to generate a high valence S4 state that oxidizes water. The key questions are what controls the order of oxidation and deprotonation of the OEC complex and how does the PSII protein modulate the cluster behavior. Here, we present a classical electrostatics Monte Carlo (MC) technique, with input from density functional theory (DFT) and molecular dynamics (MD) to study the thermodynamics of the S0 to S3 states in a cluster embedded in the whole PSII. The model is tested against model complexes and yields a very good agreement with the experiment. In the simulation, the electrochemical potential (E h) is varied to oxidize the OEC. The MC sampling allows the micro-oxo-bridges, terminal waters and amino acid residues to change their protonation states and/or their rotamer position to respond to the Mn oxidation. In addition, chloride is allowed to move during the cycle. The order of Mn oxidation found here is Mn2, Mn3, Mn4 and finally Mn1 as the system goes from the S0 to S3 states. In the S-1 state O1 and O4 are protonated as are the terminal waters on Mn4 and the Ca2+. O4 and O1 are deprotonated when S0 and S1 are formed respectively. The formation of S2 includes proton transfer from W2 to the nearby D61, reducing the release of protons to the media, consistent with experimental measurements. Protons are also lost from H337 and E329. The proton-release pattern is compared fixing the protonation states for H337, D61, terminal waters and with chloride-depleted PSII. The calculated midpoint potential of each Mn and their dependence on pH is discussed.
机译:光系统II(PSII)的放氧复合物(OEC)是独特的Mn4O5Ca2 +簇,可催化光活化的水分解反应。 OEC是用于生物启发人工系统的模型系统,该系统使用太阳能从水中拉动电子来产生燃料。 OEC经历了一个5 S状态的循环,该循环通过将电子转移到PSII中的主要电子供体P680 +来存储4个空穴,从而生成高价态S4,该态将水氧化。关键问题是什么控制着OEC复合物的氧化和去质子化的顺序,以及PSII蛋白如何调节簇的行为。在这里,我们介绍了经典的静电蒙特卡罗(MC)技术,并结合了密度泛函理论(DFT)和分子动力学(MD)的研究,研究了整个PSII中嵌入的簇中S0到S3态的热力学。该模型针对模型复合体进行了测试,并与实验产生了很好的一致性。在模拟中,改变电化学势(E h)以氧化OEC。 MC采样允许微氧代桥,末端水和氨基酸残基改变其质子化状态和/或它们的旋转异构体位置以响应Mn的氧化。另外,在循环过程中允许氯化物移动。当系统从S0转变为S3状态时,此处发现的Mn氧化顺序为Mn2,Mn3,Mn4,最后是Mn1。在S-1状态下,O1和O4质子化,Mn4和Ca2 +上的末端水也是如此。当分别形成S0和S1时,O4和O1去质子化。 S2的形成包括质子从W2转移到附近的D61,从而减少了质子向介质的释放,这与实验测量结果一致。质子也从H337和E329中丢失。比较了固定H337,D61,末端水和贫氯PSII的质子释放模式。讨论了每个Mn的计算中点电势及其对pH的依赖性。

著录项

  • 作者

    Amin, Muhamed.;

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号