首页> 外文学位 >Design and engineering of biobased materials -- process engineering & thermal recycling of poly(lactic acid), and studies in functional silane and siloxanes.
【24h】

Design and engineering of biobased materials -- process engineering & thermal recycling of poly(lactic acid), and studies in functional silane and siloxanes.

机译:生物基材料的设计和工程-聚乳酸的工艺工程和热循环,以及功能性硅烷和硅氧烷的研究。

获取原文
获取原文并翻译 | 示例

摘要

Poly (lactic acid) (PLA) is a biobased and biodegradable polymer that is manufactured from plant-biomass resources. It is one of the few biobased polymers with excellent mechanical properties and clarity that can compete successfully with current fossil-based polymers in the marketplace. PLA can be recycled or composted (biodegradable under composting conditions) to provide for an environmentally responsible end-of-life option. Therefore, PLA is finding increasing use in food and single use disposable packaging and in industrial products where it offers significant value from economical as well as environmental perspectives.;PLA melt is characterized by a relatively low melt viscosity that prevents it from being readily processed in blown film unit operations. In general, blown film processing requires relatively high melt viscosity as well as nonlinear viscoelastic properties (strain hardening). In this study, we have synthesized a new modified PLA molecule containing reactive epoxy groups by reacting PLA with chain extenders (CE). Addition of this new reactive PLA molecule at low levels (5% to 10%) in to base PLA resin significantly improved the melt strength and processability of PLA into blown films. The reaction mechanism operating in this process was investigated. The rheological properties of the CE/PLA products were studies as a function of temperatures, process conditions and CE concentrations to provide fundamental data and processing parameters for successful blown films operation.;A viable end-of-life option for PLA is chemical recycling back to monomer - a virtual cycle of monomer to polymer and back to monomer - a circular biobased economy. Today's industrial processes are based on the ring opening polymerization of the lactide monomer. Current approaches to PLA recycle is to hydrolyze it to lactic acid, purify it and then reform into lactide which can then enter into the polymerization step. However, we have shown that the polymerization of lactide to PLA follows a reversible kinetic model. We have used this reversible polymerization to recycle PLA to lactide monomer using catalytic thermal depolymerization with success. The mechanism and the rate of lactide formation from PLA as a function of time, temperature, and catalyst concentration using thermogravimetric analysis (TGA) were studied. The non-equilibrium depolymerization process leads to high yields of the desired lactide from PLA. The experimental depolymerization data fit a two-step reaction mechanism described by the Avrami equation. The model thus obtained provided all the critical parameters affecting this recycling process. Based on these data, a pilot plant of PLA recycling via thermal depolymerization is proposed. The sizing, energy balance, material balance and economic analysis were considered and included in this model recycling.;Finally, water soluble hydroxyl alkyl terminated silanes and polysiloxanes were prepared from the reaction of ethylene carbonates (or glycerol carbonate) and 3-aminopropylalkoxylsilanes. The kinetics of the hydrolysis reaction and subsequent condensation reactions under acidic conditions were studied in details using 29Si NMR. Conventional polymerization of these hydroxyl alkyl terminated silanes yielded linear, branched or resinous siloxy polymers via self-polycondensation through exchange of the ethoxy groups attached to the silicon atom with the terminal hydroxyl groups. The synthesis of the silane monomers as well as the structure and key properties of the hydroxyl alkyl terminated siloxy polymers were investigated by DSC, 1H NMR, FTIR, TGA and GPC.
机译:聚乳酸(PLA)是一种基于生物的,可生物降解的聚合物,由植物生物质资源制造而成。它是为数不多的具有优异机械性能和透明度的生物基聚合物之一,可以与市场上的当前基于化石的聚合物成功竞争。 PLA可以回收或堆肥(在堆肥条件下可生物降解),以提供对环境负责的报废选择。因此,PLA在食品和一次性使用的包装以及工业产品中正得到越来越多的使用,从经济和环境的角度来看,PLA都具有重要价值。吹膜单元操作。通常,吹膜加工需要相对较高的熔体粘度以及非线性粘弹性(应变硬化)。在这项研究中,我们通过使PLA与扩链剂(CE)反应合成了一种新的含有反应性环氧基团的改性PLA分子。在基础PLA树脂中添加这种低含量(5%至10%)的新型反应性PLA分子,可以显着提高PLA在吹塑薄膜中的熔体强度和可加工性。研究了该过程中的反应机理。根据温度,工艺条件和CE浓度对CE / PLA产品的流变特性进行了研究,为成功吹膜提供了基本数据和工艺参数。; PLA可行的报废选择是化学回收到单体-单体到聚合物再回到单体的虚拟循环-循环生物基经济。当今的工业过程基于丙交酯单体的开环聚合。 PLA循环的当前方法是将其水解为乳酸,将其纯化,然后重整为丙交酯,然后再进入聚合步骤。然而,我们已经表明丙交酯向PLA的聚合遵循可逆动力学模型。我们已经使用这种可逆聚合成功地通过催化热解聚将PLA回收为丙交酯单体。使用热重分析(TGA)研究了PLA生成丙交酯的机理和速率随时间,温度和催化剂浓度的变化。非平衡解聚过程导致从PLA产生所需丙交酯的高收率。实验性解聚数据符合由Avrami方程描述的两步反应机理。这样获得的模型提供了影响该回收过程的所有关键参数。基于这些数据,提出了通过热解聚进行PLA回收的中试工厂。最后,从碳酸亚乙酯(或碳酸甘油酯)与3-氨基丙基烷氧基硅烷的反应中制备了水溶性羟烷基封端的硅烷和聚硅氧烷,并考虑了上浆,能量平衡,物料平衡和经济分析。使用29Si NMR详细研究了在酸性条件下水解反应和后续缩合反应的动力学。这些羟烷基封端的硅烷的常规聚合反应是通过自缩聚反应通过连接在硅原子上的乙氧基与末端羟基的交换来产生线性,支化或树脂状的硅烷氧基聚合物。通过DSC,1H NMR,FTIR,TGA和GPC研究了硅烷单体的合成以及羟基烷基封端的硅烷氧基聚合物的结构和关键性能。

著录项

  • 作者

    Shi, Xiangke.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Chemical.;Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号