首页> 外文学位 >Spinal Cord Injury Therapy through Active Learning.
【24h】

Spinal Cord Injury Therapy through Active Learning.

机译:通过主动学习进行脊髓损伤治疗。

获取原文
获取原文并翻译 | 示例

摘要

Therapy employing epidural electrostimulation holds great potential for improving therapy for patients with spinal cord injury (SCI) (Harkema et al., 2011). Further promising results from combined therapies using electrostimulation have also been recently obtained (e.g., van den Brand et al., 2012). The devices being developed to deliver the stimulation are highly flexible, capable of delivering any individual stimulus among a combinatorially large set of stimuli (Gad et al., 2013). While this extreme flexibility is very useful for ensuring that the device can deliver an appropriate stimulus, the challenge of choosing good stimuli is quite substantial, even for expert human experimenters. To develop a fully implantable, autonomous device which can provide useful therapy, it is necessary to design an algorithmic method for choosing the stimulus parameters. Such a method can be used in a clinical setting, by caregivers who are not experts in the neurostimulator's use, and to allow the system to adapt autonomously between visits to the clinic. To create such an algorithm, this dissertation pursues the general class of active learning algorithms that includes Gaussian Process Upper Confidence Bound (GP-UCB, Srinivas et al., 2010), developing the Gaussian Process Batch Upper Confidence Bound (GP-BUCB, Desautels et al., 2012) and Gaussian Process Adaptive Upper Confidence Bound (GP-AUCB) algorithms. This dissertation develops new theoretical bounds for the performance of these and similar algorithms, empirically assesses these algorithms against a number of competitors in simulation, and applies a variant of the GP-BUCB algorithm in closed-loop to control SCI therapy via epidural electrostimulation in four live rats. The algorithm was tasked with maximizing the amplitude of evoked potentials in the rats' left tibialis anterior muscle. These experiments show that the algorithm is capable of directing these experiments sensibly, finding effective stimuli in all four animals. Further, in direct competition with an expert human experimenter, the algorithm produced superior performance in terms of average reward and comparable or superior performance in terms of maximum reward. These results indicate that variants of GP-BUCB may be suitable for autonomously directing SCI therapy.
机译:采用硬膜外电刺激的疗法在改善脊髓损伤(SCI)患者的治疗方面具有巨大潜力(Harkema et al。,2011)。最近还获得了使用电刺激的联合疗法的进一步有希望的结果(例如,van den Brand等,2012)。正在开发的用于传递刺激的设备具有高度的灵活性,能够在组合的大量刺激中传递任何单独的刺激(Gad等,2013)。尽管这种极高的灵活性对于确保设备可以提供适当的刺激非常有用,但即使对于专业的人类实验者来说,选择良好的刺激也是相当大的挑战。为了开发可以提供有用疗法的完全可植入的自主装置,有必要设计一种用于选择刺激参数的算法方法。这种方法可由非神经刺激器使用专家的护理人员在临床环境中使用,并允许系统在两次就诊之间自主地适应。为了创建这样的算法,本文采用了一般的主动学习算法,包括高斯过程上置信界(GP-UCB,Srinivas等人,2010),开发了高斯过程批上置信界(GP-BUCB,Desautels)。等人(2012)和高斯过程自适应上置信界(GP-AUCB)算法。本论文为这些算法和类似算法的性能开辟了新的理论界限,在仿真中针对众多竞争者对这些算法进行了实证评估,并在闭环中应用了GP-BUCB算法的一种变体通过硬膜外电刺激控制SCI治疗,其中四个活鼠。该算法的任务是最大化大鼠左胫前肌的诱发电位幅度。这些实验表明该算法能够合理地指导这些实验,在所有四只动物中找到有效的刺激。此外,在与专业人类实验人员的直接竞争中,该算法在平均奖励方面产生了卓越的性能,而在最大奖励方面产生了可比的或卓越的性能。这些结果表明,GP-BUCB的变体可能适合自主指导SCI治疗。

著录项

  • 作者

    Desautels, Thomas.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Biomedical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号