首页> 外文学位 >Designing transition metal surfaces for their adsorption properties and chemical reactivity.
【24h】

Designing transition metal surfaces for their adsorption properties and chemical reactivity.

机译:设计过渡金属表面的吸附性能和化学反应性。

获取原文
获取原文并翻译 | 示例

摘要

Many technological processes, such as catalysis, electrochemistry, corrosion, and some materials synthesis techniques, involve molecules bonding to and/or reacting on surfaces. For many of these applications, transition metals have proven to have excellent chemical reactivity, and this reactivity is strongly tied to the surface's adsorption properties. This thesis focuses on predicting adsorption properties for use in the design of transition metal surfaces for various applications.;First, it is shown that adsorption through a particular atom (e.g, C or O) can be treated in a unified way. This allows predictions of all C-bound adsorbates from a single, simple adsorbate, such as CH3. In particular, consideration of the adsorption site can improve the applicability of previous approaches, and gas-phase bond energies correlate with adsorption energies for similarly bound adsorbates.;Next, a general framework is presented for understanding and predicting adsorption through any atom. The energy of the adsorbate's highest occupied molecular orbital (HOMO) determines the strength of the repulsion between the adsorbate and the surface. Because adsorbates with similar HOMO energies behave similarly, their adsorption energies correlate. This can improve the efficiency of predictions, but more importantly it constrains catalyst design and suggests strategies for circumventing these constraints. Further, the behavior of adsorbates with dissimilar HOMO energies varies in a systematic way, allowing predictions of adsorption energy differences between any two adsorbates. These differences are also useful in surface design.;In both of these cases, the dependence of adsorption energies on surface electronic properties is explored. This dependence is used to justify the unified treatments mentioned above, and is used to gain further insight into adsorption. The properties of the surface's d band and p band control variations in adsorption energy, as does the strength of the adsorbate-surface coupling. A single equation, with only a single adsorbate-dependent fitting parameter as well as a few universal fitting parameters, is developed that can predict the adsorption energy of any radical on any close-packed transition metal surface. The surface electronic properties that are input into this equation can be estimated based on the alloy structure of the surface, improving prospects for high-throughput screening and rational catalyst design.;The methods discussed in this thesis are used to design a novel catalyst for ethylene epoxidation, which is experimentally synthesized and tested. Initial tests indicate that this catalyst may have improved selectivity over pure Ag.
机译:许多技术过程,例如催化,电化学,腐蚀和某些材料合成技术,都涉及分子键合到表面和/或在表面反应。对于许多此类应用,过渡金属已被证明具有出色的化学反应性,而这种反应性与表面的吸附性能密切相关。本论文着重于预测用于各种应用的过渡金属表面设计中的吸附性能。首先,表明通过特定原子(例如C或O)的吸附可以统一处理。这样可以从单个简单的吸附物(例如CH3)预测所有C结合的吸附物。特别地,考虑吸附位点可以改善先前方法的适用性,并且气相键能与相似结合的吸附物的吸附能相关。接下来,提出了一个通用框架,用于理解和预测通过任何原子的吸附。被吸附物最高占据分子轨道(HOMO)的能量决定了被吸附物与表面之间的排斥力。由于具有相似HOMO能量的被吸附物的行为相似,因此它们的吸附能相互关联。这可以提高预测的效率,但更重要的是,它限制了催化剂的设计并提出了规避这些限制的策略。此外,具有不同HOMO能量的吸附质的行为以系统的方式变化,从而可以预测任意两种吸附质之间的吸附能差异。这些差异在表面设计中也很有用。在这两种情况下,都探索了吸附能对表面电子性能的依赖性。这种依赖性被用来证明上述统一处理的合理性,并被用来进一步了解吸附。表面的d波段和p波段的特性控制了吸附能的变化,被吸附物与表面的耦合强度也是如此。建立了一个方程,该方程只有一个与吸附物有关的拟合参数以及几个通用拟合参数,可以预测任何紧密堆积的过渡金属表面上任何自由基的吸附能。可以基于表面的合金结构来估计输入该方程的表面电子性质,从而改善了高通量筛选和合理催化剂设计的前景。本文采用本文讨论的方法设计了新型乙烯催化剂环氧化,是通过实验合成和测试的。初步测试表明,该催化剂可能比纯银具有更高的选择性。

著录项

  • 作者

    Montemore, Matthew M.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Mechanical engineering.;Chemical engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号