首页> 外文学位 >Structure-property relationships in rare earth intermetallic compounds RFe4Ge2 and R117M52+xX 112+y.
【24h】

Structure-property relationships in rare earth intermetallic compounds RFe4Ge2 and R117M52+xX 112+y.

机译:稀土金属间化合物RFe4Ge2和R117M52 + xX 112 + y的结构-性质关系。

获取原文
获取原文并翻译 | 示例

摘要

Rare earth-based intermetallic compounds continue to draw considerable attention due to their fundamental importance in understanding structure-property relationships and potential for practical applications based on a variety of phenomena. The focus of this project is to employ two rare earth intermetallic systems: RFe4Ge2 and R117M52+xX112+y ternary intermetallic systems as model candidates to uncover the underlying electronic, atomic and microscopic interactions that result in a strong coupling between the crystallographic and magnetic sub-lattices.;A systematic investigation of the structure, magnetic and thermal properties of DyFe4Ge2 has been performed. Magnetization of DyFe4Ge2 measured as a function of temperature in 1 kOe magnetic field indicates antiferromagnetic (AFM) ordering at TN=62 K followed by two spin reorientation transitions at Tf1 = 52 K and Tf2 = 32 K and another anomaly at 15 K (Tf3). Three transitions (Tf1, Tf2, and TN) are further confirmed by heat-capacity measurement in a zero magnetic field. The two low temperature magnetic transitions are broadened and gradually vanish when the applied magnetic field exceeds 30 kOe, and the AFM transition shifts toward low temperature with increasing magnetic field. Reentrant magnetic glassy state is observed below the freezing point Tf3 = 15 K. Two field-induced metamagnetic phase transitions are observed between 2 and 50 K in fields below 140 kOe. The temperature-magnetic field phase diagram has been constructed. The first principles electronic structure calculations show that the paramagnetic tetragonal structure of DyFe4Ge2 is stable at high temperature. The calculations with collinear Dy spins confirm ferrimagnetic orthorhombic DyFe4Ge2 as the ground state structure.;The structural, magnetic, heat capacity, electrical resistivity and magnetoresistance properties of compound HoFe4Ge2 have been thoroughly investigated. The temperature dependencies of the magnetization and heat capacity show three magnetic transitions at TN = 51 K, Tf1 = 42 K, and Tf2 = 15 K. The high temperature transition is antiferromagnetic ordering and the two low temperature phase transitions are due to rearrangements of the magnetic structure. A kinetically arrested phase is observed below a freezing point of ~11 K. Below 35 K, the behavior of the isothermal magnetization reflects a first-order metamagnetic phase transition. Multiple phase transitions are also manifested in the electrical resistivity behavior. For a field change of 30 kOe, a large magnetoresistance of ~ 30% is observed near Tf2 (15K).;The magnetic properties of Pr117Co54.5Sn115.2 - a member of a family of materials with a giant unit cell - have been investigated by dc magnetization, ac magnetic susceptibility, specific heat, and electrical resistivity measurements. A magnetic glassy state at freezing temperature of ~ 11 K was detected from the magnetic susceptibility and specific heat data. The glassy state in Pr117Co54.5Sn115.2 is not the conventional spin glass with randomly oriented magnetic moments, but it is related to clusters of atoms that exist in the complex crystal lattice of the material. Furthermore, the glassy state coexists with short range antiferromagnetic order, leading to the development of antiferromagnetic clusters. A weak anomaly in the specific heat data centered around 11 K supports the formation of magnetic cluster glass state in Pr117Co54.5Sn115.2. Semiconductor-like resistivity with a negative temperature coefficient from 2 to 300 K is also observed in Pr117Co54.5Sn115.2.;The ternary intermetallic compound Pr117Co56.7Ge112 adopts the cubic Tb117Fe52Ge112-type related structure with the lattice parameter a = 29.330 (3) A. The compound exhibits one prominent magnetic transition at ~ 10 K and two additional weak magnetic anomalies are observed at ~ 26 K and ~ 46 K in a 1kOe applied field. At a higher field of 10 kOe, only one broad ferromagnetic-like transition remains at 12 K. The inverse magnetic susceptibility of Pr117Co56.7Ge112 obeys the Curie-Weiss law with a positive value of the paramagnetic Curie temperature (&;The presence of cluster spin glass in Tb117Fe52Ge113.8(1) is evidenced via ac and dc susceptibility, magnetization, magnetic relaxation and heat capacity measurements. The results clearly show that Tb117Fe52Ge113.8(1) undergoes a spin glass phase transition at a freezing temperature of ~38 K. The good fit of frequency dependence of the freezing temperature to the critical slowing down model and Vogel-Fulcher law strongly suggest the existence of a cluster glass in the Tb117Fe52Ge113.8(1) system. The heat capacity data also show absence of long-range magnetic order and a large value of Sommerfeld coefficient is obtained. The spin glass behavior of Tb117Fe52Ge113.8(1) is understood in terms of competing interactions among the multiple non-equivalent Tb sites arising from the highly complex unit cell.
机译:稀土基金属间化合物由于其在理解结构性质关系中的基础重要性以及基于各种现象的实际应用潜力而继续受到相当大的关注。该项目的重点是采用两种稀土金属间化合物系统:RFe4Ge2和R117M52 + xX112 + y三元金属间化合物系统作为模型候选物,以发现潜在的电子,原子和微观相互作用,从而导致晶体学和磁性子元素之间的强耦合。系统地研究了DyFe4Ge2的结构,磁性和热学性质。在1 kOe磁场中测得的DyFe4Ge2的磁化强度是温度的函数,表明在TN = 62 K时反铁磁(AFM)有序,随后在Tf1 = 52 K和Tf2 = 32 K时发生两个自旋重新取向转变,而在15 K(Tf3)时出现另一个异常。通过在零磁场下的热容量测量,可以进一步确定三个跃迁(Tf1,Tf2和TN)。当施加的磁场超过30 kOe时,这两个低温磁场跃迁变宽并逐渐消失,并且随着磁场的增加,AFM跃迁向低温移动。在凝固点Tf3 = 15 K以下观察到折返磁性玻璃态。在低于140 kOe的磁场中,在2至50 K之间观察到两个场感应的亚磁相变。构造了温度-磁场相位图。电子结构的第一原理计算表明,DyFe4Ge2的顺磁性四方结构在高温下稳定。共线Dy自旋的计算证实了亚铁磁性正交晶DyFe4Ge2为基态结构。对复合HoFe4Ge2的结构,磁性,热容,电阻率和磁阻性能进行了深入研究。磁化强度和热容量的温度相关性显示在TN = 51 K,Tf1 = 42 K和Tf2 = 15 K时出现三个磁跃迁。高温跃迁是反铁磁有序的,而两个低温相变是由于重排的磁性结构。在〜11 K的凝固点以下观察到了动力学停止的相。在35 K以下,等温磁化的行为反映了一级亚磁相变。电阻率行为中也显示出多个相变。对于30 kOe的磁场变化,在Tf2(15K)附近观察到〜30%的大磁阻。;已经研究了Pr117Co54.5Sn115.2(具有巨大晶胞的材料家族的成员)的磁性能。通过直流磁化,交流磁化率,比热和电阻率测量。从磁化率和比热数据检测到冻结温度为〜11 K时的玻璃态磁性。 Pr117Co54.5Sn115.2中的玻璃态不是具有随机取向磁矩的常规自旋玻璃,而是与存在于材料复杂晶格中的原子簇有关。此外,玻璃态与短程反铁磁序共存,导致反铁磁团簇的发展。以11 K为中心的比热数据中的一个微弱异常支持了Pr117Co54.5Sn115.2中磁簇玻璃态的形成。在Pr117Co54.5Sn115.2中也观察到了类似半导体的电阻率,其负温度系数为2至300 K;三元金属间化合物Pr117Co56.7Ge112采用立方Tb117Fe52Ge112型相关结构,晶格参数a = 29.330(3)答:该化合物在〜10 K处显示出一个显着的磁跃迁,并且在1kOe的施加场中在〜26 K和〜46 K处观察到另外两个弱磁异常。在10 kOe的较高磁场下,在12 K处仅保留一个宽泛的类似铁磁的跃迁.Pr117Co56.7Ge112的反磁化率遵循居里-魏斯定律,顺磁性居里温度为正值(&;存在团簇通过交流和直流磁化率,磁化强度,磁弛豫和热容测量证明了Tb117Fe52Ge113.8(1)中的自旋玻璃,结果清楚地表明,Tb117Fe52Ge113.8(1)在约38°C的冷冻温度下经历了自旋玻璃相变。 K.冷冻温度的频率依赖性与临界减速模型的良好拟合以及Vogel-Fulcher定律强烈表明Tb117Fe52Ge113.8(1)系统中存在团簇玻璃,热容量数据也显示缺乏长时间Tb117Fe52Ge113.8(1)的自旋玻璃行为从多个非当量Tb之间的竞争相互作用理解为大范围的磁阶和大的Sommerfeld系数值。它是由高度复杂的晶胞产生的。

著录项

  • 作者

    Liu, Jing.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Materials science.;Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号