首页> 外文学位 >Capillarity and two-phase fluid transport in media with fibers of dissimilar properties.
【24h】

Capillarity and two-phase fluid transport in media with fibers of dissimilar properties.

机译:具有不同性质纤维的介质中的毛细作用和两相流体传输。

获取原文
获取原文并翻译 | 示例

摘要

Capillarity is a physical phenomenon that acts as a driving force in the displacement of one fluid by another within a porous medium. This mechanism operates on the micro and nanoscale, and is responsible for countless observable events. This can include applications such as absorption in various hygiene products, self-cleaning surfaces such as water beading up and rolling off a specially-coated windshield, anti-icing, and water management in fuel cells, among many others.;The most significant research into capillarity has occurred within the last century or so. Traditional formulations for fluid absorption include the Lucas-Washburn model for porous media, which is a 1-D model that reduces a porous medium to a series of capillary tubes of some educated equivalent radius. The Richards equation allows for modeling fluid saturation as a function of time and space, but requires additional information on capillary pressure as a function of saturation (pc( S)) in order to solve for absorption. In both approaches, the surface can only possess one fluid affinity. This thesis focuses on developing capillary models necessary for predicting fluid absorption and repulsion in fibrous media. Some of the work entails utilizing approximations based on pore space available to the fluid, which allows for capillary pressure simulation in media with arbitrary fiber orientation. This thesis also presents models for tracking the fluid interface in fibrous media and coatings with simpler geometries such as horizontally and vertically aligned fibers and orthogonal fiber layers. This method hinges on solving for the true fluid interface shape between the fibers based on the balance of forces across it, ensuring the accurate location and total content of fluid in the medium, and therefore accurate pc(S). Using this approach also allows, for the first time, fibers of different fluid affinities to exist in the same structure, to examine their combined influence on fluid behavior. The models in this thesis focus mainly on absorbent fabrics and superhydrophobic coatings, but can be easily expanded for use in other applications such as water filtration from fuel, fluid transport and storage in microchannels, polymer impregnation in fiber-reinforced composite materials, among countless others.
机译:毛细现象是一种物理现象,在多孔介质内一种流体被另一种流体驱替时,它充当驱动力。这种机制在微米和纳米尺度上起作用,并负责无数可观察的事件。这可能包括诸如在各种卫生产品中的吸收,自清洁表面(如水珠化和滚涂特殊涂层的挡风玻璃),防冰和燃料电池中的水管理等应用;最重要的研究进入毛细血管已经发生在上个世纪左右。用于流体吸收的传统配方包括用于多孔介质的Lucas-Washburn模型,该模型是一维模型,可将多孔介质还原为一系列具有一定等效半径的毛细管。 Richards方程允许将流体饱和度建模为时间和空间的函数,但需要更多关于毛细管压力的饱和度函数(pc(S))的信息,以便求解吸收问题。在两种方法中,表面只能具有一种流体亲和力。本文的重点是开发预测纤维介质中流体吸收和排斥所需的毛细管模型。一些工作需要利用基于流体可用孔隙空间的近似值,这允许在具有任意纤维方向的介质中模拟毛细管压力。本文还提出了用于跟踪纤维介质和涂层中流体界面的模型,这些介质具有简单的几何形状,例如水平和垂直排列的纤维以及正交的纤维层。该方法的关键在于根据纤维之间的力平衡来求解纤维之间的真实流体界面形状,从而确保介质中流体的准确位置和总含量,从而确保pc(S)的准确性。使用这种方法还首次允许不同流体亲和力的纤维存在于同一结构中,以检查它们对流体行为的综合影响。本文中的模型主要针对吸收性织物和超疏水涂层,但可以轻松扩展以用于其他应用,例如从燃料中进行水过滤,在微通道中进行流体传输和存储,在纤维增强复合材料中浸渍聚合物等。 。

著录项

  • 作者

    Bucher, Thomas Michael, Jr.;

  • 作者单位

    Virginia Commonwealth University.;

  • 授予单位 Virginia Commonwealth University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号