首页> 外文学位 >Getting to the root of the matter: Variations in vascular root biomass and production in peatlands and responses to global change.
【24h】

Getting to the root of the matter: Variations in vascular root biomass and production in peatlands and responses to global change.

机译:深入了解问题所在:泥炭地维管束根生物量和产量的变化以及对全球变化的响应。

获取原文
获取原文并翻译 | 示例

摘要

Root biomass, production and decomposition have been poorly studied in peatland ecosystems despite evidence that they may be equal to or greater than aboveground vascular plant components and contribute significantly more carbon (C) to the soil organic matter pool. At the same time, global change phenomena such as water table drawdown (via rising temperatures) and increased nitrogen deposition threaten to dramatically alter these systems, primarily through changes to vegetation. This makes quantifying root biomass, production, and decomposition critical to our understanding of peatland C cycles. Understanding how these belowground stocks and fluxes vary with aboveground plant components in relation to environmental (climate, water table) and biological (vegetation type, species diversity) factors can provide insight into how peatland plant communities adapt to different environments. Additionally, the implications of these adaptations to C cycling within and among sites and in response to global change phenomena can then be considered.;My results indicate that the majority of vascular plant biomass in wetlands is located belowground while the majority of production occurs aboveground. Belowground biomass and production were positively related to aboveground biomass and production. Both temperature and precipitation were consistently significant predictors of biomass and production as well as vegetation type. In the Mer Bleue bog community, belowground biomass also exceeded aboveground biomass. Areas with deeper water tables had higher above- and belowground biomass and belowground production, deeper root depths, higher stem: leaf biomass and above-: belowground biomass ratios, and lower aboveground biomass: belowground production. Root decomposition declined with increasing soil depth, particularly below the mean growing season water table level. Long-term water table drawdown in the Finnish bog did not affect total root production as a result of a significant increase in tree root production at the expense of declines in herb root production. Fertilization effects on root biomass at Mer Bleue Bog were limited, with only one of the six treatments showing any effect. Small root (0.5--1 mm diameter) biomass was significantly higher in the top 10 cm of NPK plots fertilized at 10 times the ambient deposition rates relative to the controls. Overall, strong relationships between above- and belowground biomass components suggest that allometric relationships can be developed to estimate belowground biomass and production in these dwarf shrub plant communities. An expanded set of research sites that focuses on belowground processes is necessary in order to gain a better understanding of the environmental and biological aspects that drive root processes in these systems.;My research began by evaluating relationships between above- and belowground biomass and production in a review of wetland plant communities and determining the effect of vegetation type and environmental and climate factors on these relationships within and among wetland types, including peatlands. My subsequent research focused specifically on bog plant communities in Canada and Finland, and the relationships between belowground biomass and production and aboveground biomass as they relate to variations in water table, a key environmental driver within a bog site. Root decomposition rates, a crucial process determining root contributions to soil organic matter, were also studied for the two main evergreen and deciduous shrub species as they relate to root size and soil depth using the litterbag method. The final component of my research evaluated the response of root production and root biomass to long-term water table drawdown and fertilization, respectively, as they relate to aboveground biomass. Root production was estimated using in-growth cores and root biomass was sampled using soil coring.
机译:尽管有证据表明泥炭地生态系统中的根生物量,产生和分解可能很少,但有证据表明它们可能等于或大于地上维管植物成分,并且显着增加了土壤有机质库的碳(C)。同时,诸如地下水位下降(由于温度升高)和氮沉降增加等全球变化现象有可能主要通过改变植被来显着改变这些系统。这使得量化根系生物量,产量和分解对于我们了解泥炭地C循环至关重要。了解这些地下资源和通量如何随环境(气候,地下水位)和生物(植被类型,物种多样性)因素而变化,从而可以深入了解泥炭地植物群落如何适应不同的环境。此外,然后可以考虑这些适应对站点内和站点之间的C循环以及响应全球变化现象的影响。我的结果表明,湿地中大部分维管束生物量位于地下,而大部分生产都位于地下。地下生物量和产量与地下生物量和产量呈正相关。温度和降水量始终是生物量和产量以及植被类型的重要预测指标。在Mer Bleue沼泽社区,地下生物量也超过了地下生物量。地下水位较高的地区地上和地下生物量和地下产量较高,根深更深,茎:叶生物量和上-地下生物量比率较高,地上生物量:地下产量较低。根系分解随着土壤深度的增加而下降,特别是低于平均生长期的地下水位。芬兰沼泽的长期地下水位下降并没有影响总根产量,这是因为树根产量显着增加,但以草本根产量下降为代价。施肥对Mer Bleue Bog根系生物量的影响是有限的,只有六种处理方法之一显示出任何效果。相对于对照,在以环境沉积速率的10倍施肥的NPK地块顶部10 cm处,小根(直径为0.5--1 mm)生物量显着更高。总体而言,地上和地下生物量成分之间的密切关系表明,可以发展异速关系来估算这些矮灌木植物群落的地下生物量和产量。为了更好地了解驱动这些系统中根系过程的环境和生物学方面,有必要扩大研究中心的范围,以研究这些过程中的根系过程。我的研究始于评估地上部和地下生物量与生产之间的关系。审查湿地植物群落,并确定植被类型以及环境和气候因素对湿地类型(包括泥炭地)内部和之间的关系的影响。我随后的研究专门针对加拿大和芬兰的沼泽植物群落,以及地下生物量与产量和地上生物量之间的关系,因为它们与地下水位的变化有关,地下水位是沼泽地内的关键环境驱动因素。还使用垃圾袋方法研究了两种主要的常绿和落叶灌木物种的根分解率,这是决定根对土壤有机质贡献的关键过程,因为它们与根的大小和土壤深度有关。我研究的最后一部分评估了根系生产和根系生物量对长期地下水位下降和施肥的响应,因为它们与地上生物量有关。使用生长中的核心估算根系产量,并使用土壤取芯对根系生物量进行采样。

著录项

  • 作者

    Murphy, Meaghan T.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Biology Ecology.;Biology Plant Physiology.;Physical Geography.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号