首页> 外文学位 >My Adventures in Microuidics: Exploration of Novel Modes for Sized-Based DNA Separation.
【24h】

My Adventures in Microuidics: Exploration of Novel Modes for Sized-Based DNA Separation.

机译:我在微流体领域的历险记:探索基于大小的DNA分离的新模式。

获取原文
获取原文并翻译 | 示例

摘要

DNA separation is ubiquitous in biological research. The common technique for performing these separations, gel electrophoresis, leaves much to be desired. The separations are slow, taking hours to separate. There can also be huge variations in quality between gels, due to the randomness of the gel. Gels are limited to DNA smaller than about 15 kbp, unless pulsed fields are used that take even longer to separate. Performing these separations in microfluidic devices overcomes some of these problems. Two common geometries used to separate DNA are the slit-well geometry and the post array geometry. Using the understanding gained using these geometries, researchers have been able to create continuous separation devices.;We have tested novel operations modes, initially predicted by theory and simulations, within these well understood geometries. We achieved bi-directional migration using an asymmetric pulsed electric field in the slit well geometry. This created a non-clogging DNA filter. We achieved improved separation in a hexagonal post array by rotating the array. We were able to separate DNA in a shorter array, 4 mm, and at a higher electric field, 50 V/cm, than seen before. We also tried to create a continuous DNA separation device using proximity field nano-patterning, but were ultimately unsuccessful.;While the work done to develop microfluidic DNA separation devices by a multitude of researchers ultimately did not change how DNA separations are performed in biology labs, the advances and insights gained from those performing the work led to great advancements in DNA manipulation techniques, including genomic and sequencing techniques. In fact, a genomic technique called DNA barcoding, which is performed by stretching DNA in very small channels, or nanochannels, would not have been possible without the initial microfluidic work in DNA separation techniques.
机译:DNA分离在生物学研究中无处不在。进行这些分离的常用技术,即凝胶电泳,还有很多需要改进的地方。分离很慢,需要几个小时才能分离。由于凝胶的随机性,凝胶之间的质量也可能存在巨大差异。凝胶仅限于小于约15 kbp的DNA,除非使用脉冲场需要更长的时间才能分离。在微流体装置中进行这些分离克服了其中一些问题。用于分离DNA的两种常见几何形状是缝孔几何形状和柱阵列几何形状。通过使用这些几何图形获得的理解,研究人员已经能够创建连续的分离设备。我们已经在这些众所周知的几何图形中测试了新颖的操作模式,这些操作模式最初是通过理论和模拟预测的。我们在狭缝孔几何结构中使用非对称脉冲电场实现了双向迁移。这创建了一个不阻塞的DNA过滤器。通过旋转阵列,我们在六角形柱阵列中实现了改进的分离。与以往相比,我们能够以更短的阵列(4毫米)和更高的电场(50 V / cm)分离DNA。我们还尝试使用邻近场纳米图案创建连续的DNA分离设备,但最终没有成功;尽管许多研究人员开发微流体DNA分离设备的工作最终并未改变生物学实验室中DNA分离的方式,从从事这项工作的人员那里获得的进步和见识导致了DNA操作技术(包括基因组和测序技术)的巨大进步。实际上,没有DNA分离技术中的最初微流体技术,通过DNA在很小的通道或纳米通道中拉伸来执行的称为DNA条码的基因组技术是不可能的。

著录项

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Biophysics.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号