首页> 外文学位 >A microfluidic in vitro model of the blood-brain barrier.
【24h】

A microfluidic in vitro model of the blood-brain barrier.

机译:血脑屏障的微流体外模型。

获取原文
获取原文并翻译 | 示例

摘要

The blood-brain barrier (BBB) limits entry of most molecules into the brain and complicates the development of brain-targeting compounds, necessitating novel BBB models. This dissertation describes the first microfluidic BBB model allowing the study of BBB properties in relation to various chemical compounds by enabling tunable wall shear stress (WSS) via dynamic fluid flow, cell-cell interaction through a thin co-culture membrane, time-dependent delivery of test compounds, and integration of sensors into the system, resulting in significant reduction of reagents and cells required and shorter cell seeding time. Use of parallel channels first enabled simultaneous monitoring of multiple cell populations under a wide range (~x15) of WSS.;The microfluidic model formed the BBB by incorporating brain endothelial (b.End3) and glial (C6/C8D1A) cells at the intersection of two crossing microchannels, respectively representing luminal and abluminal sides, fabricated in a transparent polydimethylsiloxane (PDMS) substrate utilizing high-precision soft lithography techniques. The utilized cells were adopted from immortalized cells for high consistency over repeated passages and pure and proliferative culture.;The developed microfluidic BBB model was validated by (1) expression of tight junction protein ZO-1 and glial protein GFAP by fluorescence imaging, and P-gp activity by Calcein AM, confirming key BBB proteins; (2) high trans-endothelial electrical resistance (TEER) of co-cultures exceeding 250Ocm 2 confirming sufficiently contiguous cell layer formation; (3) chemically-induced barrier modulation, with transient TEER loss by 150microM histamine (~50% for 8-15min), and increase in permeability at elevated pH (10.0); (4) size-dependent (668-70,000Da) compound permeability mimicking in vivo trends; and (5) highly linear correlation (R2>0.85) of clearance rates of seven selected neural drugs with in vivo brain/plasma ratios. We demonstrated the effects of WSS (0-86dyn/cm2) on bEnd.3 properties under increasing WSS, including increase in (6) TEER, (7) cell re-alignment toward flow direction, and (8) protein expression of ZO-1/P-gp, and (9) decrease in tracer permeability.;The developed in vitro microfluidic BBB model provides distinct advantages for monitoring and modulating barrier functions and prediction of compound permeability. Thus, it would provide an innovative platform to study mechanisms and pathology of barrier function as well as to assess novel pharmaceuticals early in development for their BBB clearance capabilities.
机译:血脑屏障(BBB)限制了大多数分子进入大脑,并使靶向大脑的化合物的开发复杂化,因此需要新颖的BBB模型。这篇论文描述了第一个微流体BBB模型,该模型允许通过动态流体流动,通过薄的共培养膜的细胞间相互作用,时间依赖性传递来启用可调节的壁剪切应力(WSS),从而研究与各种化合物相关的BBB特性测试化合物的使用,以及将传感器集成到系统中,从而大大减少了所需的试剂和细胞,并缩短了细胞播种时间。使用并行通道首先可以在宽范围(〜x15)的WSS中同时监视多个细胞群体;微流模型通过在交叉点处合并脑内皮细胞(b.End3)和神经胶质细胞(C6 / C8D1A)形成了血脑屏障使用高精度软光刻技术在透明的聚二甲基硅氧烷(PDMS)基板中制造的两个交叉微通道(分别代表腔侧和腔侧)的一部分。利用的细胞是从永生化细胞中经过反复传代和纯净增殖培养而获得的高一致性。;通过以下方法验证了所建立的微流控BBB模型:(1)通过荧光成像表达紧密连接蛋白ZO-1和神经胶质蛋白GFAP,以及P钙黄绿素AM的-gp活性,确认了关键的BBB蛋白; (2)共培养物的高跨内皮电阻(TEER)超过250Ocm 2,证实足够连续的细胞层形成; (3)化学诱导的屏障调节,具有150microM组胺短暂的TEER损失(在8-15分钟内约50%),并在pH升高(10.0)时渗透性增加; (4)模仿体内趋势的大小依赖性(668-70,000Da)化合物渗透性; (5)七种选定的神经药物与体内脑/血浆比例的清除率具有高度线性相关性(R2> 0.85)。我们证明了WSS(0-86dyn / cm2)在增加的WSS下对bEnd.3属性的影响,包括(6)TEER的增加,(7)细胞向流向的重新排列以及(8)ZO-的蛋白表达1 / P-gp,以及(9)示踪剂渗透率降低。;开发的体外微流体BBB模型为监测和调节屏障功能以及预测化合物渗透率提供了明显的优势。因此,它将为研究屏障功能的机制和病理学,以及在开发早期评估新型药物的BBB清除能力提供一个创新的平台。

著录项

  • 作者

    Booth, Ross Hunter.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号